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Algebraic-Topological Dualities: Rings and Algebras

I Various classical dualities take the form:

Commutative Rings/Algebras ↔ Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
↔ Locally Compact Hausdorff Spaces.

2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
↔ 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).

3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
↔ Bundles of Simple Rings over Stone Spaces.

I What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
↔ Twisted Effective LCH Étale Groupoids.

Functoriality?

2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-
Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras
↔ Twisted Effective Ample Groupoids.

Functoriality?

3. ????? Rings ↔ Bundles of Rings over Ample Groupoids?
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Algebraic-Topological Dualities: Lattices and Semigroups

I Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras ↔ Stone Spaces

(Bool Alg = Bounded Complemented Distributive Lattice)

e.g. Wallman (1938), Shirota (1952), De Vries (1962),
Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978),
Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011),
Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

I Bundle extension by Lawson-Kudryavsteva (2015):

Skew Boolean Algebras ↔ Bundles of Stone Spaces.

I Noncommutative extensions by Lawson-Kudryavsteva (2017):

Boolean Inverse Semigroups ↔ Ample Groupoids.

Boolean Restriction Semigroups ↔ Ample Categories.

????? Semigroups ↔ Ample Category-Groupoid Bundles?

I Could we even use these to derive their ring/algebra analogs?
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Stone Spaces → Boolean Algebras

I Let X be a Stone space (= 0-dim compact Hausdorff space).

I Order clopens CO(X ) by inclusion, i.e.

O ≤ N ⇔ O ⊆ N

I Then CO(X ) is a Boolean algebra ∵ ∀ O,N,M ∈ CO(X )

∅ ⊆ O ⊆ X (Bounded)

O ∧ N = O ∩ N (Meets/Infima)

O ∨ N = O ∪ N (Joins/Suprema)

Oc = X \ O (Complements)

M ∧ (N ∨ O) = (M ∧ N) ∨ (M ∧ O) (Distributive)
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Stone Space Recovery

I How can we recover a Stone space X from CO(X )?

I For each x ∈ X , note

Ux = {O ∈ CO(X ) : x ∈ O}

is a maximal proper down-directed up-set (= ultrafilter):

∅ /∈ Ux (proper)

O ⊇ N ∈ Ux ⇒ O ∈ Ux (up-set)

O,N ∈ Ux ⇒ O ∩ N ∈ Ux (down-directed)

O ∈ Ux or X \ O ∈ Ux (maximal)

I Conversely, if U ⊆ CO(X ) is an ultrafilter then
⋂
U 6= ∅,

as X is compact, and hence
⋂
U = {x}, as U is maximal.

I So x 7→ Ux is a bijection from X onto ultrafilters in CO(X ).

I Moreover, O ∈ CO(X ) gets mapped to {Ux : O ∈ Ux}.
I Topologising ultrafilters like so, x 7→ Ux is a homeomorphism.
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Boolean Algebras → Stone Spaces

I Given a Boolean algebra B, consider the topology on

U(B) = {U ⊆ B : U is an ultrafilter}

with basis U(a) = {U ∈ U(B) : a ∈ U}, for a ∈ B.

I Identifying each U ∈ U(B) with 1U : B → {0, 1} where

1U(a) =

{
1 if a ∈ U

0 if a /∈ U,

U(B) is a closed subspace of {0, 1}B .

I Thus U(B) is also a Stone space.

Theorem (Stone 1936)

Boolean algebras are dual to Stone spaces via

B 7→ U(B) and X 7→ CO(X ).
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Groupoids → Inverse Semigroups

I A groupoid G is a ‘group with many units’, i.e.

1. We have a (partial) associative product on G 2 ⊆ G × G .
2. Each g ∈ G 0 = {g ∈ G : gg = g} is a unit, i.e.

(f , g), (g , h) ∈ G 2 ⇒ fg = f and gh = h.

3. Each g ∈ G has a (unique) inverse g−1, i.e. such that

s(g) = g−1g ∈ G 0 and r(g) = gg−1 ∈ G 0.

I We denote the bisections or slices of G by

B(G ) = {B ⊆ G : r and s are injective on B}.
I Associativity passes from G to B(G ) with the product

BC = {bc : b ∈ B, c ∈ C and (b, c) ∈ G 2}.
I For any B,C ⊆ G 0, note BC = B ∩ C = CB.
⇒ Idempotents in B(G ) commute (as B ⊆ G 0 iff BB = B).
I Also B ∈ B(G ) implies B−1 = {b−1 : b ∈ B} ∈ B(G ),

BB−1B = B and B−1BB−1 = B−1.

⇒ B(G ) is an inverse semigroup.
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Lattice Structure

I Take a groupoid G . For any O,N ∈ B(G ),

O ⊆ N ⇔ O = ON−1N.

⇒ The canonical order on the inverse semigroup B(G ) is just ⊆.

I B(G ) is a ∧-semilattice: O ∧ N = O ∩ N, for O,N ∈ B(G ).

I B(G ) is NOT a ∨-semilattice as O ∪ N may not be a slice.

I But orthogonal elements of B(G ) have joins. In fact,

ON−1 = O−1N = ∅ ⇔ O ∩ N = ∅ and O ∪ N ∈ B(G ).

I Arbitrary idempotents O,N ⊆ G 0 also have joins O ∪ N as
well as (relative) complements O \ N, i.e. satisfying

O ∧ (O \ N) = ∅ and O ∨ (O \ N) = O ∨ N.

I The idempotents P(G 0) are also distributive.

⇒ B(G ) forms a Boolean inverse semigroup.
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Ample Groupoids → Boolean Inverse Semigroups

I A topology on a groupoid G is étale if it has a basis of open
bisections B closed under taking inverses and products, i.e.

O ∈ B ⇒ O−1 ∈ B.
O,N ∈ B ⇒ ON ∈ B.

⇔ B◦(G ) = {O ⊆ G : O is an open bisection} is both a basis for
the topology and an inverse subsemigroup of B(G ).

⇔ s, r, −1 and · (on G 2) are all continuous open maps.

I A Hausdorff topology on a groupoid is ample if it has a basis
of compact open bisections closed under inverses & products.

⇔ B◦c (G ) = {O ⊆ G : O is a compact open bisection} is both a
basis for the topology and an inverse subsemigroup of B(G ).

⇔ G is 0-dimensional locally compact and étale.

I If O,N ∈ B◦c (G ) then O \ N,O ∩ N ∈ B◦c (G ). If O ⊥ N then
O ∪ N ∈ B◦c (G ) too so B◦c (G ) is a Boolean inverse semigroup.
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Boolean Inverse Semigroups → Ample Groupoids

I Any Boolean inverse semigroup S again yields a Stone space

U(S) = {U ⊆ S : U is an ultrafilter}
with basis U(a) = {U ∈ U(S) : a ∈ U}, for a ∈ S .

I U(S) is also a groupoid with inverse U 7→ U−1 and product

U·V = (UV )≤ = {a ≥ uv : u ∈ U and v ∈ V } (when 0 /∈ UV ).

I Each basic open set U(a) is then a compact open bisection.
I Also U(a)−1 = U(a−1) and U(a) · U(b) = U(ab).
⇒ U(S) is an ample groupoid.
I If S = B◦c (G ), for ample G , we have an isomorphism to U(S):

g 7→ Ug = {O ∈ S : g ∈ O},
i.e. a homeomorphism with Ug−1 = U−1

g and Ugh = Ug · Uh.

Theorem (Lawson 2010)

Boolean inverse semigroups are dual to ample groupoids via

S 7→ U(S) and G 7→ B◦c (G ).
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Interlude: Meets vs Expectations

I If G is an ample groupoid then the largest idempotent
contained in any O ∈ B◦c (G ) is given by Φ(O) = O ∩ G 0.

I On any inverse semigroup S with meets, we can also define

Φ(a) = a ∧ aa−1 = a ∧ a−1a = max{e ∈ S : ee = e ≤ a}.

I Leech’s Converse (1995): If Φ(a) = max{e ∈ S : ee = e ≤ a}
exists for all a ∈ S then S has meets, specifically

a ∧ b = Φ(ab−1)b = aΦ(a−1b).

I Leech also noted Φ is an expectation: for any e ∈ ran(Φ),

Φ(ae) = Φ(a)e, Φ(ea) = eΦ(a) and Φ(e) = e.

I Φ is also shiftable, i.e. Φ(ab)a = aΦ(ba), and bistable:

ab ∈ ran(Φ) ⇒ aΦ(b),Φ(a)b ∈ ran(Φ).

I Bistable shiftable expectations will soon play a greater role...
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Ample Category Bundles

I A category C is a ‘groupoid without inverses’, i.e.

1. We have a (partial) associative product on C 2 ⊆ C × C .
2. Each c ∈ C has source and range units s(c), r(c) ∈ C 0, i.e.

cs(c) = c = cr(c) and C 2 = {(c , d) ∈ C 2 : s(c) = r(d)}.

I A topology on C is étale if s, r and · (on C 2) are all
cts open locally injective maps (= local homeomorphisms).

I A map ρ : C → D between categories is an isocofibration if
ρ(ab) = ρ(a)ρ(b) when (a, b) ∈ C 2 OR (ρ(a), ρ(b)) ∈ D2.

Definition
An étale category bundle is an open continuous isocofibration
ρ : C � G from an étale category C onto an étale groupoid G .

I Continuous a : G → C with ρ ◦ a = idG is a section.
I Continuous 0 : G → C with ρ ◦ 0 = idG is a zero section if

c0(g) = 0(ρ(c)g) and 0(g)d = 0(gρ(d)).

I If G is an ample groupoid, ρ has a zero section and each fibre
has invertibles (ρ[C×] = G ), ρ is an ample category bundle.
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Ample Category Bundles → Semigroups of Sections

I Let ρ : C � G be an ample category bundle.

I The support of a section a : G → C is given by

supp(a) = {g ∈ G : a(g) 6= 0(g)}.

I If supp(a) or supp(b) is a slice, we can define ab : G → C by

ab(g) =

{
a(h)b(i) if h ∈ supp(a), i ∈ supp(b) and g = hi

0(g) otherwise.

I supp(ab) is compact when supp(a) and supp(b) are.

⇒ compact-slice-supported sections Sc(ρ) form a semigroup.

I Can we recover the bundle ρ from the semigroup Sc(ρ)?

I No – different bundles can yields isomorphic semigroups.

∴ We need is some additional algebraic structure on Sc(ρ)...
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Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Expectations and Projections

I Take an ample category bundle ρ : C � G .

I A shiftable expectation Φ = Φρ
c on Sc(ρ) is given by

Φ(a)(g) =

{
a(g) if g ∈ G 0

0(g) otherwise.

I We denote the subsemigroup of projections in Sc(ρ) by

Zc(ρ) = {z ∈ Sc(ρ) : z [supp(z)] ⊆ C 0}.

I Note supp(a) ⊆ G 0 and z [supp(z)] ⊆ C 0 ⇒ az = za, i.e.

Zc(ρ) ⊆ Z(ran(Φ)).

I Also Zc(ρ) is bistable and normal in Sc(ρ)
(N is normal in S if aN = Na, for all a ∈ S).

⇒ (Sc(ρ),Zc(ρ),Φ) forms a well-structured semigroup.



Order Structure

I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.

I If ρ : C � G is an ample category bundle with well-structured
(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ

c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).

⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Order Structure
I On well-structured (S ,Z ,Φ) we define orders ≤ and < by

a ≤ b ⇔ a ∈ bZ ∩ Zb. (Restriction)

a < b ⇔ ∃s ∈ S (a <s b), where (Domination)

a <s b ⇔ as, sa ∈ ran(Φ), sb, bs ∈ Z and bsa = a = asb.

I For inverse semigroups, ≤ and < are just the canonical order.
I If ρ : C � G is an ample category bundle with well-structured

(S ,Z ,Φ) = (Sc(ρ),Zc(ρ),Φρ
c) then, for any a, b ∈ Sc(ρ),

a ≤ b ⇔ a|supp(a) = b|supp(a)

a < b ⇔ supp(a) ⊆ b−1[C×].

I In fact a ≤ b ⇒ a|O = b|O for some clopen O ⊇ supp(a).
⇒ we can define a (relative) complement b \ a ∈ Sc(ρ) by

(b \ a)(g) =

{
0(g) if g ∈ supp(a)

b(g) otherwise.

I Also, for every a ∈ Sc(ρ), we have b ∈ Sc(ρ) with a < b.



Orthosuprema

I On well-structured (S ,Z ,Φ) with 0 ∈ Z we define ⊥ by
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a(g) if g ∈ supp(a)

b(g) otherwise.

I For any other s ∈ Sc(ρ), we also immediately see that

(a ∨ b)s = as ∨ bs & s(a ∨ b) = sa ∨ sb. (Distributivity)

I Also y , z ∈ Zc(ρ), i.e. y [supp(y)], z [supp(z)] ⊆ C 0,
⇒ y ∨ z ∈ Zc(ρ).
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Steinberg Semigroups

Definition
We call (S ,Z ,Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in Z(ran(Φ)).

We call (S ,Z ,Φ) a Steinberg semigroup if, moreover,
every element of S is dominated by another, Z has a zero and
both S and Z have distributive orthosuprema and complements.

I What we have shown is that every ample category bundle
ρ : C � G yields a Steinberg semigroup (Sc(ρ),Zc(ρ),Φρ

c).
I Note G here is Hausdorff but C may not be. In fact

C is Hausdorff ⇔ each a ∈ Sc(ρ) has open support

⇒ each a ∈ Sc(ρ) has support projections,

i.e. minimal y , z ∈ Zc(ρ) such that ya = a = az .

⇒ (S ,Z ) is a restriction semigroup (see Kudryavtseva-Lawson).

Boolean Restriction ∧-Semigroups $ Steinberg Semigroups.
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⇒ each a ∈ Sc(ρ) has support projections,

i.e. minimal y , z ∈ Zc(ρ) such that ya = a = az .

⇒ (S ,Z ) is a restriction semigroup (see Kudryavtseva-Lawson).

Boolean Restriction ∧-Semigroups $ Steinberg Semigroups.



Ample Category Bundle Recovery

I Can we recover an ample category bundle ρ : C � G from
the resulting Steinberg semigroup (Sc(ρ),Zc(ρ),Φρ

c)?

I Yes. As before, we first have an isomorphism from G onto the
ultrafilter groupoid of Sc(ρ) (w.r.t. domination <):

g 7→ Ug = {a ∈ S : a(g) ∈ C×}.

I Note a(g) = b(g) implies a|O = b|O for some open O 3 x so

a(g) = b(g) ⇔ ∃s ∈ Ug−1 (Φ(as) = Φ(bs)).

I Thus the fibre at g can be recovered from the equivalence
classes of Sc(ρ) modulo the relation defined on the right.
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Steinberg Semigroups → Ample Category Bundles

I Take a Steinberg semigroup (S ,Z ,Φ).

I The ultrafilters U(S) again form an ample groupoid where

U · V = (UV )< and U−1 = {s ∈ S : U 3 u <s v}.

I Given U ∈ U(S), define an equivalence ∼U on S by

a ∼U b ⇔ ∃s ∈ U−1 (Φ(as) = Φ(bs)).

I The pairs [a,U] = (a∼U ,U<) of ultrafilters and their
equivalence classes form a category under the product

[a,U][b,V ] = [ab,UV ] when 0 /∈ UV .

I Define ρ on these pairs U [S ] onto the ultrafilters U(S) by

ρ([a,U]) = U<.

I This ρ is an ample category bundle with the topology on U [S ]
generated by ρ−1[U(a)] and U [a] = {[a,U] : U ∈ U(S)}.
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Representing Steinberg Semigroups as Continuous Sections

I Take a Steinberg semigroup (S ,Z ,Φ) and consider the
resulting ample category bundle ρ = ρ(S ,Z ,Φ) : U [S ]� U(S).

I Every a ∈ S defines â ∈ Sc(ρ) by

â(U) = [a,U].

I This is a semigroup isomorphism from S onto Sc(ρ).

I It also maps Z onto Zc(ρ) and, for all a ∈ Sc(ρ),

Φ̂(a) = Φρ
c(â).

Theorem (B. 2021)

Steinberg semigroups are dual to ample category bundles via

(S ,Z ,Φ) 7→ ρ(S ,Z ,Φ) and ρ 7→ (Sc(ρ),Zc(ρ),Φρ
c).
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Morphisms

I If (S ,Z ,Φ) and (S ′,Z ′,Φ′) are Steinberg semigroups then a
Steinberg morphism is a map π : S → S ′ s.t. π[Z ] ⊆ Z ′,

π(ab) = π(a)π(b), π(a∨b) = π(a)∨π(b) and Φ′(π(a)) = π(Φ(a)).

I Then we get a continuous star-bijective functor π̂ from an
open subgroupoid of U(S ′) to U(S) defined by

π̂(U ′) = π−1[U ′]< when π−1[U ′] 6= ∅.

I We also get a bundle morphism from the π̂-pullback of
ρ(S ,Z ,Φ) to ρ(S ′,Z ′,Φ′).

I In this way, Steinberg morphisms between Steinberg
semigroups correspond precisely to Pierce morphisms
between the corresponding ample category bundles.

Theorem (B. 2021)

Under these morphisms, Steinberg semigroups and
ample category bundles form equivalent categories.
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Ample Ringoid Bundles → Steinberg Rings

Definition
An ample ringoid bundle is an ample category bundle ρ : C � G
where each fibre ρ−1{g} is an abelian group and products
distribute over sums whenever they are defined, i.e.

(a + b)(c + d) = ac + ad + bc + bd .

I We can then extend the product from Sc(ρ) to all compactly
supported continuous sections Cc(ρ) by convolution:

ab(g) =
∑
g=hi

a(h)b(i)

(sums are finite because Cc(ρ) consists of finite sums of Sc(ρ))

I Φρ
c also extends to an additive expectation on Cc(ρ).

⇒ (Cc(ρ),Sc(ρ),Zc(ρ),Φρ
c) is a Steinberg ring, i.e.

a Steinberg semigroup generating a larger ring.
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Steinberg Rings → Ample Ringoid Bundles

I Given a Steinberg ring (A,S ,Z ,Φ), define U(S) as before.

I For each U ∈ U(S) we can define ∼U now on all of A, i.e.

a ∼U b ⇔ ∃s ∈ U−1 (Φ(as) = Φ(bs)).

I As Φ is additive, so is ∼U . Thus we can add equivalence
classes for fixed U ∈ U(S), i.e. [a,U] + [b,U] = [a + b,U].

I This makes ρ : U [A]� U(S) is an ample ringoid bundle.

I Moreover, a 7→ â is faithful on all of A where

â(U) = [a,U].

I Again Â = Cc(ρ), Ŝ = Sc(ρ), Ẑ = Zc(ρ) and Φ̂ = Φρ
c .

I Morphisms are as before but also preserve additive structure.

Theorem (B. 2021)

Steinberg rings & ample ringoid bundles form equivalent categories.
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I Moreover, a 7→ â is faithful on all of A where
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