Lawson-Pierce Duality between Ample Groupoid Bundles and Steinberg Rings & Semigroups

Tristan Bice

Institute of Mathematics of the Czech Academy of Sciences

Groupoidfest 2021 (November 13th) University of Colorado, Colorado Springs

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

```
1. Gelfand (1941):
Commutative C*-Algebras
```

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

 $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces.}$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

 $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$

2. Keimel (1970):

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

 $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces.}$

2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

 $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces.}$

2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

 \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

- \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces.}$
- 2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

- \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

- \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

 $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

 $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.

What about noncommutative extensions?

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008): Cartan Pairs of C*-Algebras

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras

 $\leftrightarrow \mbox{ Twisted Effective LCH Étale Groupoids.}$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras

 $\leftrightarrow \text{ Twisted Effective LCH Étale Groupoids. Functoriality?}$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow \ \, \text{Bundles of Simple Rings over Stone Spaces.}$
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):
 - Cartan Pairs of C*-Algebras
 - ↔ Twisted Effective LCH Étale Groupoids. Functoriality?
 - 2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):
 - Cartan Pairs of C*-Algebras
 - ↔ Twisted Effective LCH Étale Groupoids. Functoriality?
 - 2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):
 - Cartan Pairs of C*-Algebras
 - ↔ Twisted Effective LCH Étale Groupoids. Functoriality?
 - 2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras

 $\leftrightarrow \mbox{ Twisted Effective Ample Groupoids}.$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces}.$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):
 - Cartan Pairs of C*-Algebras
 - ↔ Twisted Effective LCH Étale Groupoids. Functoriality?
 - 2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras

 $\leftrightarrow \text{ Twisted Effective Ample Groupoids. Functoriality?}$

Various classical dualities take the form:

 $\label{eq:commutative Rings/Algebras} \quad \leftrightarrow \quad \text{Topological Spaces/Bundles}.$

1. Gelfand (1941):

Commutative C*-Algebras

- $\leftrightarrow \ \ \text{Locally Compact Hausdorff Spaces.}$
- 2. Keimel (1970):
 - Idempotent-Generated Torsion-Free Commutative Algebras
 - \leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
- 3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

- $\leftrightarrow~$ Bundles of Simple Rings over Stone Spaces.
- What about noncommutative extensions?
 - 1. Kumjian (1986) and Renault (2008):
 - Cartan Pairs of C*-Algebras
 - ↔ Twisted Effective LCH Étale Groupoids. Functoriality?
 - 2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras

- $\leftrightarrow \text{ Twisted Effective Ample Groupoids. Functoriality?}$
- 3. **?????** Rings \leftrightarrow Bundles of Rings over Ample Groupoids?

Other lattice-topological dualities trace back to Stone (1936):

(Bool Alg = Bounded Complemented Distributive Lattice)

• Other lattice-topological dualities trace back to Stone (1936):

(Bool Alg = Bounded Complemented Distributive Lattice)

e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

Other lattice-topological dualities trace back to Stone (1936):

(Bool Alg = Bounded Complemented Distributive Lattice)

e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

Bundle extension by Lawson-Kudryavsteva (2015):

 ${\sf Skew \ Boolean \ Algebras} \quad \leftrightarrow \quad {\sf Bundles \ of \ Stone \ Spaces}.$

Other lattice-topological dualities trace back to Stone (1936):

(Bool Alg = Bounded Complemented Distributive Lattice)

e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

Bundle extension by Lawson-Kudryavsteva (2015):

 ${\small \mathsf{Skew Boolean Algebras}} \quad \leftrightarrow \quad {\small \mathsf{Bundles of Stone Spaces}}.$

Noncommutative extensions by Lawson-Kudryavsteva (2017):

Boolean Restriction Semigroups \leftrightarrow Ample Categories.

????? Semigroups \leftrightarrow Ample Category-Groupoid Bundles?

Other lattice-topological dualities trace back to Stone (1936):

(Bool Alg = Bounded Complemented Distributive Lattice)

e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

Bundle extension by Lawson-Kudryavsteva (2015):

 ${\small \mathsf{Skew Boolean Algebras}} \quad \leftrightarrow \quad {\small \mathsf{Bundles of Stone Spaces}}.$

Noncommutative extensions by Lawson-Kudryavsteva (2017):

 ${\sf Boolean \ Inverse \ Semigroups} \quad \leftrightarrow \quad {\sf Ample \ Groupoids}.$

Boolean Restriction Semigroups \leftrightarrow Ample Categories.

????? Semigroups ↔ Ample Category-Groupoid Bundles?

Could we even use these to derive their ring/algebra analogs?

▶ Let X be a Stone space (= 0-dim compact Hausdorff space).

• Let X be a Stone space (= 0-dim compact Hausdorff space).

• Order clopens CO(X) by inclusion, i.e.

$$O \leq N \quad \Leftrightarrow \quad O \subseteq N$$

Let X be a Stone space (= 0-dim compact Hausdorff space).

• Order clopens CO(X) by inclusion, i.e.

$$O \leq N \quad \Leftrightarrow \quad O \subseteq N$$

▶ Then CO(X) is a Boolean algebra $\because \forall O, N, M \in CO(X)$

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

For each $x \in X$, note

$$\mathcal{U}_x = \{ O \in \mathcal{CO}(X) : x \in O \}$$

is a maximal proper down-directed up-set (= ultrafilter):

$$\begin{array}{cccc} \emptyset \notin \mathcal{U}_{x} & (\text{proper}) \\ O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & (\text{up-set}) \\ O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & (\text{down-directed}) \\ O \in \mathcal{U}_{x} & \text{or} & X \setminus O \in \mathcal{U}_{x} & (\text{maximal}) \end{array}$$

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

For each $x \in X$, note

$$\mathcal{U}_x = \{ O \in \mathcal{CO}(X) : x \in O \}$$

is a maximal proper down-directed up-set (= ultrafilter):

$$\begin{array}{cccc} \emptyset \notin \mathcal{U}_{x} & (\text{proper}) \\ O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & (\text{up-set}) \\ O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & (\text{down-directed}) \\ O \in \mathcal{U}_{x} & \text{or} & X \setminus O \in \mathcal{U}_{x} & (\text{maximal}) \end{array}$$

Conversely, if U ⊆ CO(X) is an ultrafilter then ∩U ≠ Ø, as X is compact, and hence ∩U = {x}, as U is maximal.

Stone Space Recovery

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

For each $x \in X$, note

$$\mathcal{U}_x = \{ O \in \mathcal{CO}(X) : x \in O \}$$

is a maximal proper down-directed up-set (= ultrafilter):

$$\begin{array}{cccc} \emptyset \notin \mathcal{U}_{x} & (\text{proper}) \\ O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & (\text{up-set}) \\ O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & (\text{down-directed}) \\ O \in \mathcal{U}_{x} & \text{or} & X \setminus O \in \mathcal{U}_{x} & (\text{maximal}) \end{array}$$

- Conversely, if U ⊆ CO(X) is an ultrafilter then ∩U ≠ Ø, as X is compact, and hence ∩U = {x}, as U is maximal.
- So $x \mapsto \mathcal{U}_x$ is a bijection from X onto ultrafilters in $\mathcal{CO}(X)$.

Stone Space Recovery

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

For each $x \in X$, note

$$\mathcal{U}_x = \{ O \in \mathcal{CO}(X) : x \in O \}$$

is a maximal proper down-directed up-set (= ultrafilter):

$$\begin{array}{cccc} \emptyset \notin \mathcal{U}_{x} & (\text{proper}) \\ O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & (\text{up-set}) \\ O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & (\text{down-directed}) \\ O \in \mathcal{U}_{x} & \text{or} & X \setminus O \in \mathcal{U}_{x} & (\text{maximal}) \end{array}$$

Conversely, if U ⊆ CO(X) is an ultrafilter then ∩U ≠ Ø, as X is compact, and hence ∩U = {x}, as U is maximal.

So $x \mapsto \mathcal{U}_x$ is a bijection from X onto ultrafilters in $\mathcal{CO}(X)$.

• Moreover, $O \in CO(X)$ gets mapped to $\{U_x : O \in U_x\}$.

Stone Space Recovery

• How can we recover a Stone space X from $\mathcal{CO}(X)$?

For each $x \in X$, note

$$\mathcal{U}_x = \{ O \in \mathcal{CO}(X) : x \in O \}$$

is a maximal proper down-directed up-set (= ultrafilter):

$$\begin{array}{cccc} \emptyset \notin \mathcal{U}_{x} & (\text{proper}) \\ O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & (\text{up-set}) \\ O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & (\text{down-directed}) \\ O \in \mathcal{U}_{x} & \text{or} & X \setminus O \in \mathcal{U}_{x} & (\text{maximal}) \end{array}$$

- Conversely, if U ⊆ CO(X) is an ultrafilter then ∩U ≠ Ø, as X is compact, and hence ∩U = {x}, as U is maximal.
- So $x \mapsto \mathcal{U}_x$ is a bijection from X onto ultrafilters in $\mathcal{CO}(X)$.
- Moreover, $O \in CO(X)$ gets mapped to $\{U_x : O \in U_x\}$.
- Topologising ultrafilters like so, $x \mapsto U_x$ is a homeomorphism.

• Given a Boolean algebra *B*, consider the topology on

 $\mathcal{U}(B) = \{ U \subseteq B : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(B) : a \in U\}$, for $a \in B$.

▶ Given a Boolean algebra *B*, consider the topology on

 $\mathcal{U}(B) = \{ U \subseteq B : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(B) : a \in U\}$, for $a \in B$.

▶ Identifying each $U \in U(B)$ with $\mathbf{1}_U : B \to \{0, 1\}$ where

$$\mathbf{1}_U(a) = egin{cases} 1 & ext{if } a \in U \ 0 & ext{if } a \notin U, \end{cases}$$

 $\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^B$.

▶ Given a Boolean algebra *B*, consider the topology on

 $\mathcal{U}(B) = \{ U \subseteq B : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(B) : a \in U\}$, for $a \in B$.

▶ Identifying each $U \in U(B)$ with $\mathbf{1}_U : B \to \{0, 1\}$ where

$$\mathbf{1}_U(a) = egin{cases} 1 & ext{if } a \in U \ 0 & ext{if } a \notin U, \end{cases}$$

 $\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^B$.

• Thus $\mathcal{U}(B)$ is also a Stone space.

• Given a Boolean algebra *B*, consider the topology on

 $\mathcal{U}(B) = \{ U \subseteq B : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(B) : a \in U\}$, for $a \in B$.

▶ Identifying each $U \in U(B)$ with $\mathbf{1}_U : B \to \{0, 1\}$ where

$$\mathbf{1}_U(a) = egin{cases} 1 & ext{if } a \in U \ 0 & ext{if } a \notin U, \end{cases}$$

 $\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^B$.

• Thus $\mathcal{U}(B)$ is also a Stone space.

Theorem (Stone 1936)

Boolean algebras are dual to Stone spaces via

$$B \mapsto \mathcal{U}(B)$$
 and $X \mapsto \mathcal{CO}(X)$.

► A groupoid G is a 'group with many units', i.e.

► A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^2 \subseteq G \times G$.

$Groupoids \rightarrow Inverse \ Semigroups$

► A groupoid G is a 'group with many units', i.e.

- 1. We have a (partial) associative product on $G^2 \subseteq G \times G$.
- 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e.

$$(f,g),(g,h)\in G^2$$
 \Rightarrow $fg=f$ and $gh=h.$

$Groupoids \rightarrow Inverse \ Semigroups$

A groupoid G is a 'group with many units', i.e.
1. We have a (partial) associative product on G² ⊆ G × G.
2. Each g ∈ G⁰ = {g ∈ G : gg = g} is a unit, i.e. (f,g), (g,h) ∈ G² ⇒ fg = f and gh = h.
3. Each g ∈ G has a (unique) inverse g⁻¹, i.e. such that s(g) = g⁻¹g ∈ G⁰ and r(g) = gg⁻¹ ∈ G⁰.

A groupoid G is a 'group with many units', i.e.
1. We have a (partial) associative product on G² ⊆ G × G.
2. Each g ∈ G⁰ = {g ∈ G : gg = g} is a unit, i.e. (f,g), (g, h) ∈ G² ⇒ fg = f and gh = h.
3. Each g ∈ G has a (unique) inverse g⁻¹, i.e. such that s(g) = g⁻¹g ∈ G⁰ and r(g) = gg⁻¹ ∈ G⁰.
We denote the bisections or slices of G by

 $\mathcal{B}(G) = \{B \subseteq G : r \text{ and } s \text{ are injective on } B\}.$

▶ A groupoid G is a 'group with many units', i.e. 1. We have a (partial) associative product on $G^2 \subseteq G \times G$. 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e. $(f,g), (g,h) \in G^2 \Rightarrow fg = f \text{ and } gh = h.$ 3. Each $g \in G$ has a (unique) inverse g^{-1} , i.e. such that $s(g) = g^{-1}g \in G^0$ and $r(g) = gg^{-1} \in G^0$. We denote the bisections or slices of G by $\mathcal{B}(G) = \{B \subseteq G : r \text{ and } s \text{ are injective on } B\}.$ Associativity passes from G to $\mathcal{B}(G)$ with the product $BC = \{bc : b \in B, c \in C \text{ and } (b, c) \in G^2\}.$

▶ A groupoid G is a 'group with many units', i.e. 1. We have a (partial) associative product on $G^2 \subseteq G \times G$. 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e. $(f,g), (g,h) \in G^2 \Rightarrow fg = f \text{ and } gh = h.$ 3. Each $g \in G$ has a (unique) inverse g^{-1} , i.e. such that $s(g) = g^{-1}g \in G^0$ and $r(g) = gg^{-1} \in G^0$. We denote the bisections or slices of G by $\mathcal{B}(G) = \{ B \subset G : r \text{ and } s \text{ are injective on } B \}.$ Associativity passes from G to $\mathcal{B}(G)$ with the product $BC = \{bc : b \in B, c \in C \text{ and } (b, c) \in G^2\}.$ For any $B, C \subseteq G^0$, note $BC = B \cap C = CB$.

▶ A groupoid G is a 'group with many units', i.e. 1. We have a (partial) associative product on $G^2 \subseteq G \times G$. 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e. $(f,g), (g,h) \in G^2 \Rightarrow fg = f \text{ and } gh = h.$ 3. Each $g \in G$ has a (unique) inverse g^{-1} , i.e. such that $s(g) = g^{-1}g \in G^0$ and $r(g) = gg^{-1} \in G^0$. We denote the bisections or slices of G by $\mathcal{B}(G) = \{ B \subset G : r \text{ and } s \text{ are injective on } B \}.$ Associativity passes from G to $\mathcal{B}(G)$ with the product $BC = \{bc : b \in B, c \in C \text{ and } (b, c) \in G^2\}.$ For any $B, C \subseteq G^0$, note $BC = B \cap C = CB$.

 \Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^0$ iff BB = B).

▶ A groupoid G is a 'group with many units', i.e. 1. We have a (partial) associative product on $G^2 \subseteq G \times G$. 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e. $(f,g), (g,h) \in G^2 \Rightarrow fg = f \text{ and } gh = h.$ 3. Each $g \in G$ has a (unique) inverse g^{-1} , i.e. such that $s(g) = g^{-1}g \in G^0$ and $r(g) = gg^{-1} \in G^0$. We denote the bisections or slices of G by $\mathcal{B}(G) = \{B \subseteq G : r \text{ and } s \text{ are injective on } B\}.$ Associativity passes from G to $\mathcal{B}(G)$ with the product $BC = \{bc : b \in B, c \in C \text{ and } (b, c) \in G^2\}.$ For any $B, C \subseteq G^0$, note $BC = B \cap C = CB$. \Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^0$ iff BB = B). ▶ Also $B \in \mathcal{B}(G)$ implies $B^{-1} = \{b^{-1} : b \in B\} \in \mathcal{B}(G)$, $BB^{-1}B = B$ and $B^{-1}BB^{-1} = B^{-1}$.

▶ A groupoid G is a 'group with many units', i.e. 1. We have a (partial) associative product on $G^2 \subseteq G \times G$. 2. Each $g \in G^0 = \{g \in G : gg = g\}$ is a unit, i.e. $(f,g), (g,h) \in G^2 \Rightarrow fg = f \text{ and } gh = h.$ 3. Each $g \in G$ has a (unique) inverse g^{-1} , i.e. such that $s(g) = g^{-1}g \in G^0$ and $r(g) = gg^{-1} \in G^0$. We denote the bisections or slices of G by $\mathcal{B}(G) = \{ B \subset G : r \text{ and } s \text{ are injective on } B \}.$ Associativity passes from G to $\mathcal{B}(G)$ with the product $BC = \{bc : b \in B, c \in C \text{ and } (b, c) \in G^2\}.$ For any $B, C \subseteq G^0$, note $BC = B \cap C = CB$. \Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^0$ iff BB = B). Also $B \in \mathcal{B}(G)$ implies $B^{-1} = \{b^{-1} : b \in B\} \in \mathcal{B}(G)$, $BB^{-1}B = B$ and $B^{-1}BB^{-1} = B^{-1}$. $\Rightarrow \mathcal{B}(G)$ is an inverse semigroup.

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

 \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

 \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .

▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

- \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .
- ▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.
- ▶ $\mathcal{B}(G)$ is NOT a \lor -semilattice as $O \cup N$ may not be a slice.

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

- \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .
- ▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.
- ▶ $\mathcal{B}(G)$ is NOT a \lor -semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

$$ON^{-1} = O^{-1}N = \emptyset \qquad \Leftrightarrow \qquad O \cap N = \emptyset \text{ and } O \cup N \in \mathcal{B}(G).$$

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

- \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .
- ▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.
- ▶ $\mathcal{B}(G)$ is NOT a \lor -semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

 $ON^{-1} = O^{-1}N = \emptyset \qquad \Leftrightarrow \qquad O \cap N = \emptyset \text{ and } O \cup N \in \mathcal{B}(G).$

Arbitrary idempotents O, N ⊆ G⁰ also have joins O ∪ N as well as (relative) complements O \ N, i.e. satisfying

$$O \wedge (O \setminus N) = \emptyset$$
 and $O \vee (O \setminus N) = O \vee N$.

• Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

- \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .
- ▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.
- ▶ $\mathcal{B}(G)$ is NOT a \lor -semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

 $ON^{-1} = O^{-1}N = \emptyset \qquad \Leftrightarrow \qquad O \cap N = \emptyset \text{ and } O \cup N \in \mathcal{B}(G).$

Arbitrary idempotents O, N ⊆ G⁰ also have joins O ∪ N as well as (relative) complements O \ N, i.e. satisfying

$$O \wedge (O \setminus N) = \emptyset$$
 and $O \vee (O \setminus N) = O \vee N$.

• The idempotents $\mathcal{P}(G^0)$ are also distributive.

▶ Take a groupoid *G*. For any $O, N \in \mathcal{B}(G)$,

$$O \subseteq N \quad \Leftrightarrow \quad O = ON^{-1}N.$$

- \Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq .
- ▶ $\mathcal{B}(G)$ is a \land -semilattice: $O \land N = O \cap N$, for $O, N \in \mathcal{B}(G)$.
- ▶ $\mathcal{B}(G)$ is NOT a \lor -semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

 $ON^{-1} = O^{-1}N = \emptyset \qquad \Leftrightarrow \qquad O \cap N = \emptyset \text{ and } O \cup N \in \mathcal{B}(G).$

Arbitrary idempotents O, N ⊆ G⁰ also have joins O ∪ N as well as (relative) complements O \ N, i.e. satisfying

$$O \wedge (O \setminus N) = \emptyset$$
 and $O \vee (O \setminus N) = O \vee N$.

The idempotents P(G⁰) are also distributive.
 ⇒ B(G) forms a Boolean inverse semigroup.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

Ample Groupoids \rightarrow Boolean Inverse Semigroups

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

$$O \in \mathcal{B} \Rightarrow O^{-1} \in \mathcal{B}.$$

 $O, N \in \mathcal{B} \Rightarrow ON \in \mathcal{B}.$

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

$$O \in \mathcal{B} \Rightarrow O^{-1} \in \mathcal{B}.$$

 $O, N \in \mathcal{B} \Rightarrow ON \in \mathcal{B}.$

 $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$

A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

$$O \in \mathcal{B} \Rightarrow O^{-1} \in \mathcal{B}.$$

 $O, N \in \mathcal{B} \Rightarrow ON \in \mathcal{B}.$

 $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$

 \Leftrightarrow s, r, $^{-1}$ and \cdot (on G^2) are all continuous open maps.

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

- $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow s, r, $^{-1}$ and \cdot (on G^2) are all continuous open maps.
- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses & products.

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

- $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow s, r, $^{-1}$ and \cdot (on G^2) are all continuous open maps.
- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses & products.
- $\Leftrightarrow \mathcal{B}^{\circ}_{c}(G) = \{ O \subseteq G : O \text{ is a compact open bisection} \} \text{ is both a basis for the topology and an inverse subsemigroup of } \mathcal{B}(G).$

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

- $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow s, r, $^{-1}$ and \cdot (on G^2) are all continuous open maps.
- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses & products.
- $\Leftrightarrow \mathcal{B}^{\circ}_{c}(G) = \{ O \subseteq G : O \text{ is a compact open bisection} \} \text{ is both a basis for the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow G is 0-dimensional locally compact and étale.

► A topology on a groupoid G is étale if it has a basis of open bisections B closed under taking inverses and products, i.e.

- $\Leftrightarrow \mathcal{B}^{\circ}(G) = \{ O \subseteq G : O \text{ is an open bisection} \} \text{ is both a basis for} \\ \text{the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow s, r, $^{-1}$ and \cdot (on G^2) are all continuous open maps.
- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses & products.
- $\Leftrightarrow \mathcal{B}^{\circ}_{c}(G) = \{ O \subseteq G : O \text{ is a compact open bisection} \} \text{ is both a basis for the topology and an inverse subsemigroup of } \mathcal{B}(G).$
- \Leftrightarrow G is 0-dimensional locally compact and étale.
- ▶ If $O, N \in \mathcal{B}^{\circ}_{c}(G)$ then $O \setminus N, O \cap N \in \mathcal{B}^{\circ}_{c}(G)$. If $O \perp N$ then $O \cup N \in \mathcal{B}^{\circ}_{c}(G)$ too so $\mathcal{B}^{\circ}_{c}(G)$ is a Boolean inverse semigroup.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

Boolean Inverse Semigroups \rightarrow Ample Groupoids

Any Boolean inverse semigroup S again yields a Stone space

 $\mathcal{U}(S) = \{ U \subseteq S : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(S) : a \in U\}$, for $a \in S$.

- Any Boolean inverse semigroup S again yields a Stone space U(S) = {U ⊆ S : U is an ultrafilter} with basis U(a) = {U ∈ U(S) : a ∈ U}, for a ∈ S.
 U(S) is also a groupoid with inverse U → U⁻¹ and product
 - $U \cdot V = (UV)^{\leq} = \{a \geq uv : u \in U \text{ and } v \in V\} \text{ (when } 0 \notin UV\text{)}.$

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space U(S) = {U ⊆ S : U is an ultrafilter} with basis U(a) = {U ∈ U(S) : a ∈ U}, for a ∈ S.
 U(S) is also a groupoid with inverse U → U⁻¹ and product U·V = (UV)[≤] = {a ≥ uv : u ∈ U and v ∈ V} (when 0 ∉ UV).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.

Any Boolean inverse semigroup S again yields a Stone space

 $\mathcal{U}(S) = \{ U \subseteq S : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(S) : a \in U\}$, for $a \in S$.

- ▶ U(S) is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V = (UV)^{\leq} = \{a \geq uv : u \in U \text{ and } v \in V\}$ (when $0 \notin UV$).
- Each basic open set U(a) is then a compact open bisection.
 Also U(a)⁻¹ = U(a⁻¹) and U(a) ⋅ U(b) = U(ab).

Any Boolean inverse semigroup S again yields a Stone space

 $\mathcal{U}(S) = \{ U \subseteq S : U \text{ is an ultrafilter} \}$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(S) : a \in U\}$, for $a \in S$.

- ▶ U(S) is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V = (UV)^{\leq} = \{a \geq uv : u \in U \text{ and } v \in V\}$ (when $0 \notin UV$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1} = \mathcal{U}(a^{-1})$ and $\mathcal{U}(a) \cdot \mathcal{U}(b) = \mathcal{U}(ab)$.
- $\Rightarrow \mathcal{U}(S)$ is an ample groupoid.

Any Boolean inverse semigroup S again yields a Stone space
U(S) = {U ⊆ S : U is an ultrafilter}
with basis U(a) = {U ∈ U(S) : a ∈ U}, for a ∈ S.
U(S) is also a groupoid with inverse U → U⁻¹ and product

$$U \cdot V = (UV)^{\leq} = \{a \geq uv : u \in U \text{ and } v \in V\}$$
 (when $0 \notin UV$).

- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1} = \mathcal{U}(a^{-1})$ and $\mathcal{U}(a) \cdot \mathcal{U}(b) = \mathcal{U}(ab)$.
- ⇒ $\mathcal{U}(S)$ is an ample groupoid. ► If $S = \mathcal{B}_c^\circ(G)$, for ample G, we have an isomorphism to $\mathcal{U}(S)$:

$$g\mapsto \mathcal{U}_g=\{O\in S:g\in O\},$$

i.e. a homeomorphism with $\mathcal{U}_{g^{-1}} = \mathcal{U}_g^{-1}$ and $\mathcal{U}_{gh} = \mathcal{U}_g \cdot \mathcal{U}_h$.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

Any Boolean inverse semigroup S again yields a Stone space

$$\mathcal{U}(S) = \{ U \subseteq S : U \text{ is an ultrafilter} \}$$

with basis $\mathcal{U}(a) = \{U \in \mathcal{U}(S) : a \in U\}$, for $a \in S$.

- ▶ U(S) is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V = (UV)^{\leq} = \{a \geq uv : u \in U \text{ and } v \in V\}$ (when $0 \notin UV$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1} = \mathcal{U}(a^{-1})$ and $\mathcal{U}(a) \cdot \mathcal{U}(b) = \mathcal{U}(ab)$.
- $\Rightarrow \mathcal{U}(S)$ is an ample groupoid.
 - ▶ If $S = \mathcal{B}_{c}^{\circ}(G)$, for ample *G*, we have an isomorphism to $\mathcal{U}(S)$:

$$g\mapsto \mathcal{U}_g=\{O\in S:g\in O\},$$

i.e. a homeomorphism with $\mathcal{U}_{g^{-1}} = \mathcal{U}_g^{-1}$ and $\mathcal{U}_{gh} = \mathcal{U}_g \cdot \mathcal{U}_h$.

Theorem (Lawson 2010)

Boolean inverse semigroups are dual to ample groupoids via

$$S\mapsto \mathcal{U}(S)$$
 and $G\mapsto \mathcal{B}^\circ_\mathsf{c}(G).$

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

• On any inverse semigroup S with meets, we can also define

$$\Phi(a) = a \wedge aa^{-1} = a \wedge a^{-1}a = \max\{e \in S : ee = e \leq a\}.$$

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

On any inverse semigroup S with meets, we can also define

$$\Phi(a) = a \wedge aa^{-1} = a \wedge a^{-1}a = \max\{e \in S : ee = e \leq a\}.$$

Leech's Converse (1995): If Φ(a) = max{e ∈ S : ee = e ≤ a} exists for all a ∈ S then S has meets, specifically

$$a \wedge b = \Phi(ab^{-1})b = a\Phi(a^{-1}b).$$

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

On any inverse semigroup S with meets, we can also define

$$\Phi(a) = a \wedge aa^{-1} = a \wedge a^{-1}a = \max\{e \in S : ee = e \leq a\}.$$

Leech's Converse (1995): If Φ(a) = max{e ∈ S : ee = e ≤ a} exists for all a ∈ S then S has meets, specifically

$$a \wedge b = \Phi(ab^{-1})b = a\Phi(a^{-1}b).$$

• Leech also noted Φ is an expectation: for any $e \in \operatorname{ran}(\Phi)$,

$$\Phi(ae)=\Phi(a)e, \qquad \Phi(ea)=e\Phi(a) \qquad ext{and} \qquad \Phi(e)=e.$$

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

On any inverse semigroup S with meets, we can also define

$$\Phi(a) = a \wedge aa^{-1} = a \wedge a^{-1}a = \max\{e \in S : ee = e \leq a\}.$$

Leech's Converse (1995): If Φ(a) = max{e ∈ S : ee = e ≤ a} exists for all a ∈ S then S has meets, specifically

$$a \wedge b = \Phi(ab^{-1})b = a\Phi(a^{-1}b).$$

• Leech also noted Φ is an expectation: for any $e \in ran(\Phi)$,

$$\Phi(ae) = \Phi(a)e, \qquad \Phi(ea) = e\Phi(a) \qquad ext{and} \qquad \Phi(e) = e.$$

• Φ is also shiftable, i.e. $\Phi(ab)a = a\Phi(ba)$, and bistable:

 $ab\in\operatorname{ran}(\Phi)$ \Rightarrow $a\Phi(b),\Phi(a)b\in\operatorname{ran}(\Phi).$

If G is an ample groupoid then the largest idempotent contained in any O ∈ B^o_c(G) is given by Φ(O) = O ∩ G⁰.

• On any inverse semigroup S with meets, we can also define

$$\Phi(a) = a \wedge aa^{-1} = a \wedge a^{-1}a = \max\{e \in S : ee = e \leq a\}.$$

Leech's Converse (1995): If Φ(a) = max{e ∈ S : ee = e ≤ a} exists for all a ∈ S then S has meets, specifically

$$a \wedge b = \Phi(ab^{-1})b = a\Phi(a^{-1}b).$$

• Leech also noted Φ is an expectation: for any $e \in \operatorname{ran}(\Phi)$,

$$\Phi(ae)=\Phi(a)e, \qquad \Phi(ea)=e\Phi(a) \qquad ext{and} \qquad \Phi(e)=e.$$

• Φ is also shiftable, i.e. $\Phi(ab)a = a\Phi(ba)$, and bistable:

$$ab\in\operatorname{ran}(\Phi)$$
 \Rightarrow $a\Phi(b),\Phi(a)b\in\operatorname{ran}(\Phi).$

Bistable shiftable expectations will soon play a greater role...

► A category *C* is a 'groupoid without inverses', i.e.

- ► A category *C* is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.

- ► A category *C* is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

- A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \to D$ between categories is an isocofibration if $\rho(ab) = \rho(a)\rho(b)$ when $(a, b) \in C^2 \ \underline{OR} \ (\rho(a), \rho(b)) \in D^2$.

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).

A map ρ : C → D between categories is an isocofibration if ρ(ab) = ρ(a)ρ(b) when (a, b) ∈ C² <u>OR</u> (ρ(a), ρ(b)) ∈ D².

Definition

An étale category bundle is an open continuous isocofibration $\rho: C \twoheadrightarrow G$ from an étale category C onto an étale groupoid G.

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).

• A map $\rho : C \to D$ between categories is an isocofibration if $\rho(ab) = \rho(a)\rho(b)$ when $(a,b) \in C^2 \ \underline{OR} \ (\rho(a),\rho(b)) \in D^2$.

Definition

An étale category bundle is an open continuous isocofibration $\rho: C \twoheadrightarrow G$ from an étale category C onto an étale groupoid G.

• Continuous $a: G \to C$ with $\rho \circ a = id_G$ is a section.

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).

• A map $\rho : C \to D$ between categories is an isocofibration if $\rho(ab) = \rho(a)\rho(b)$ when $(a,b) \in C^2 \ \underline{OR} \ (\rho(a),\rho(b)) \in D^2$.

Definition

An étale category bundle is an open continuous isocofibration $\rho: C \rightarrow G$ from an étale category C onto an étale groupoid G.

- Continuous $a: G \to C$ with $\rho \circ a = id_G$ is a section.
- Continuous $\mathbf{0}: G \to C$ with $\rho \circ \mathbf{0} = \mathrm{id}_G$ is a zero section if

$$c \mathbf{0}(g) = \mathbf{0}(
ho(c)g)$$
 and $\mathbf{0}(g)d = \mathbf{0}(g
ho(d)).$

- ► A category C is a 'groupoid without inverses', i.e.
 - 1. We have a (partial) associative product on $C^2 \subseteq C \times C$.
 - 2. Each $c \in C$ has source and range units $s(c), r(c) \in C^0$, i.e.

$$cs(c) = c = cr(c)$$
 and $C^2 = \{(c,d) \in C^2 : s(c) = r(d)\}.$

A topology on C is étale if s, r and · (on C²) are all cts open locally injective maps (= local homeomorphisms).

• A map $\rho : C \to D$ between categories is an isocofibration if $\rho(ab) = \rho(a)\rho(b)$ when $(a,b) \in C^2 \ \underline{OR} \ (\rho(a),\rho(b)) \in D^2$.

Definition

An étale category bundle is an open continuous isocofibration $\rho: C \twoheadrightarrow G$ from an étale category C onto an étale groupoid G.

- Continuous $a: G \to C$ with $\rho \circ a = id_G$ is a section.
- Continuous $\mathbf{0}: G \to C$ with $\rho \circ \mathbf{0} = \mathrm{id}_G$ is a zero section if

$$c \mathbf{0}(g) = \mathbf{0}(
ho(c)g)$$
 and $\mathbf{0}(g)d = \mathbf{0}(g
ho(d)).$

If G is an ample groupoid, ρ has a zero section and each fibre has invertibles (ρ[C[×]] = G), ρ is an ample category bundle.

• Let $\rho: C \twoheadrightarrow G$ be an ample category bundle.

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab : G \to C$ by

$$ab(g) = egin{cases} a(h)b(i) & ext{if } h \in ext{supp}(a), i \in ext{supp}(b) ext{ and } g = hi \ m{0}(g) & ext{otherwise.} \end{cases}$$

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab: G \to C$ by

$$ab(g) = egin{cases} a(h)b(i) & ext{if } h \in ext{supp}(a), i \in ext{supp}(b) ext{ and } g = hi \ m{0}(g) & ext{otherwise.} \end{cases}$$

supp(ab) is compact when supp(a) and supp(b) are.

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab: G \to C$ by

 $ab(g) = \begin{cases} a(h)b(i) & \text{if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text{ and } g = hi \\ \mathbf{0}(g) & \text{otherwise.} \end{cases}$

- ▶ supp(ab) is compact when supp(a) and supp(b) are.
- \Rightarrow compact-slice-supported sections $\mathcal{S}_{c}(\rho)$ form a semigroup.

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab: G \to C$ by

 $ab(g) = \begin{cases} a(h)b(i) & \text{if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text{ and } g = hi \\ \mathbf{0}(g) & \text{otherwise.} \end{cases}$

supp(ab) is compact when supp(a) and supp(b) are.
 ⇒ compact-slice-supported sections S_c(ρ) form a semigroup.
 Can we recover the bundle ρ from the semigroup S_c(ρ)?

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab: G \to C$ by

 $ab(g) = \begin{cases} a(h)b(i) & \text{if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text{ and } g = hi \\ \mathbf{0}(g) & \text{otherwise.} \end{cases}$

supp(ab) is compact when supp(a) and supp(b) are.
 ⇒ compact-slice-supported sections S_c(ρ) form a semigroup.
 Can we recover the bundle ρ from the semigroup S_c(ρ)?
 No - different bundles can yields isomorphic semigroups.

- Let $\rho : C \twoheadrightarrow G$ be an ample category bundle.
- The support of a section $a: G \to C$ is given by

$$\operatorname{supp}(a) = \{g \in G : a(g) \neq \mathbf{0}(g)\}.$$

• If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $ab: G \to C$ by

 $ab(g) = \begin{cases} a(h)b(i) & \text{if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text{ and } g = hi \\ \mathbf{0}(g) & \text{otherwise.} \end{cases}$

supp(ab) is compact when supp(a) and supp(b) are.
 ⇒ compact-slice-supported sections S_c(ρ) form a semigroup.
 Can we recover the bundle ρ from the semigroup S_c(ρ)?
 No - different bundles can yields isomorphic semigroups.
 ∴ We need is some additional algebraic structure on S_c(ρ)...

Expectations and Projections

Expectations and Projections

• Take an ample category bundle ρ : $C \twoheadrightarrow G$.

- Take an ample category bundle $\rho: C \twoheadrightarrow G$.
- ► A shiftable expectation $\Phi = \Phi_{c}^{\rho}$ on $S_{c}(\rho)$ is given by

$$\Phi(a)(g) = egin{cases} a(g) & ext{if } g \in G^0 \ \mathbf{0}(g) & ext{otherwise}. \end{cases}$$

- Take an ample category bundle $\rho: C \twoheadrightarrow G$.
- A shiftable expectation $\Phi = \Phi_{c}^{\rho}$ on $S_{c}(\rho)$ is given by

$$\Phi(a)(g) = egin{cases} a(g) & ext{if } g \in G^0 \ \mathbf{0}(g) & ext{otherwise}. \end{cases}$$

• We denote the subsemigroup of projections in $S_c(\rho)$ by

$$\mathcal{Z}_{\mathsf{c}}(\rho) = \{ z \in \mathcal{S}_{\mathsf{c}}(\rho) : z[\operatorname{supp}(z)] \subseteq C^0 \}.$$

- Take an ample category bundle $\rho: C \twoheadrightarrow G$.
- A shiftable expectation $\Phi = \Phi_{c}^{\rho}$ on $S_{c}(\rho)$ is given by

$$\Phi(a)(g) = egin{cases} a(g) & ext{if } g \in G^0 \ \mathbf{0}(g) & ext{otherwise.} \end{cases}$$

• We denote the subsemigroup of projections in $S_{c}(\rho)$ by

$$\mathcal{Z}_{\mathsf{c}}(\rho) = \{ z \in \mathcal{S}_{\mathsf{c}}(\rho) : z[\operatorname{supp}(z)] \subseteq C^0 \}.$$

• Note $\operatorname{supp}(a) \subseteq G^0$ and $z[\operatorname{supp}(z)] \subseteq C^0 \Rightarrow az = za$, i.e. $\mathcal{Z}_{\mathsf{c}}(\rho) \subseteq \mathsf{Z}(\operatorname{ran}(\Phi)).$

- Take an ample category bundle $\rho: C \twoheadrightarrow G$.
- A shiftable expectation $\Phi = \Phi_{c}^{\rho}$ on $S_{c}(\rho)$ is given by

$$\Phi(a)(g) = egin{cases} a(g) & ext{if } g \in G^0 \ \mathbf{0}(g) & ext{otherwise.} \end{cases}$$

• We denote the subsemigroup of projections in $S_c(\rho)$ by

$$\mathcal{Z}_{\mathsf{c}}(\rho) = \{ z \in \mathcal{S}_{\mathsf{c}}(\rho) : z[\operatorname{supp}(z)] \subseteq C^0 \}.$$

Note supp(a) ⊆ G⁰ and z[supp(z)] ⊆ C⁰ ⇒ az = za, i.e. $Z_c(ρ) ⊆ Z(ran(Φ)).$

- Take an ample category bundle $\rho: C \twoheadrightarrow G$.
- A shiftable expectation $\Phi = \Phi_{c}^{\rho}$ on $S_{c}(\rho)$ is given by

$$\Phi(a)(g) = egin{cases} a(g) & ext{if } g \in G^0 \ \mathbf{0}(g) & ext{otherwise.} \end{cases}$$

• We denote the subsemigroup of projections in $S_{c}(\rho)$ by

$$\mathcal{Z}_{\mathsf{c}}(\rho) = \{ z \in \mathcal{S}_{\mathsf{c}}(\rho) : z[\operatorname{supp}(z)] \subseteq C^0 \}.$$

▶ Note supp(*a*) ⊆ G^0 and $z[supp(z)] \subseteq C^0 \Rightarrow az = za$, i.e.

 $\mathcal{Z}_{\mathsf{c}}(\rho) \subseteq \mathsf{Z}(\operatorname{ran}(\Phi)).$

 Also Z_c(ρ) is bistable and normal in S_c(ρ) (N is normal in S if aN = Na, for all a ∈ S).
 ⇒ (S_c(ρ), Z_c(ρ), Φ) forms a well-structured semigroup.

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \text{ where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \text{ and } bsa = a = asb. \end{array}$$

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \text{ where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \text{ and } bsa = a = asb. \end{array}$$

 \blacktriangleright For inverse semigroups, \leq and < are just the canonical order.

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \ \text{where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \ \text{and} \ bsa = a = asb. \\ \end{array}$$
For inverse semigroups, $\leq \operatorname{and} < \operatorname{are}$ just the canonical order.

• If $\rho: C \twoheadrightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi) = (S_c(\rho), Z_c(\rho), \Phi_c^{\rho})$ then, for any $a, b \in S_c(\rho)$,

$$egin{array}{lll} a\leq b & \Leftrightarrow & a|_{\mathrm{supp}(a)}=b|_{\mathrm{supp}(a)}\ a< b & \Leftrightarrow & \mathrm{supp}(a)\subseteq b^{-1}[C^{ imes}]. \end{array}$$

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \text{ where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \text{ and } bsa = a = asb. \end{array}$$

For inverse semigroups, ≤ and < are just the canonical order.
 If ρ : C → G is an ample category bundle with well-structured (S, Z, Φ) = (S_c(ρ), Z_c(ρ), Φ^ρ_c) then, for any a, b ∈ S_c(ρ),

$a \leq b$	\Leftrightarrow	$ a _{\mathrm{supp}(a)}=b _{\mathrm{supp}(a)}$
a < b	\Leftrightarrow	$\operatorname{supp}(a) \subseteq b^{-1}[C^{\times}].$

▶ In fact $a \le b \Rightarrow a|_{O} = b|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$.

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \text{ where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \text{ and } bsa = a = asb. \end{array}$$

For inverse semigroups, ≤ and < are just the canonical order.
 If ρ : C → G is an ample category bundle with well-structured (S, Z, Φ) = (S_c(ρ), Z_c(ρ), Φ^ρ_c) then, for any a, b ∈ S_c(ρ),

$$egin{array}{lll} a\leq b&\Leftrightarrow&a|_{\mathrm{supp}(a)}=b|_{\mathrm{supp}(a)}\ a< b&\Leftrightarrow&\mathrm{supp}(a)\subseteq b^{-1}[C^{ imes}]. \end{array}$$

▶ In fact $a \le b \Rightarrow a|_{O} = b|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$. ⇒ we can define a (relative) complement $b \setminus a \in \mathcal{S}_{c}(\rho)$ by

$$(b \setminus a)(g) = egin{cases} \mathbf{0}(g) & ext{if } g \in ext{supp}(a) \\ b(g) & ext{otherwise.} \end{cases}$$

▶ On well-structured (S, Z, Φ) we define orders \leq and < by

$$\begin{array}{lll} a \leq b & \Leftrightarrow & a \in bZ \cap Zb. & (\text{Restriction}) \\ a < b & \Leftrightarrow & \exists s \in S \ (a <_s b), \text{ where} & (\text{Domination}) \\ a <_s b & \Leftrightarrow & as, sa \in \operatorname{ran}(\Phi), \ sb, bs \in Z \text{ and } bsa = a = asb. \end{array}$$

For inverse semigroups, ≤ and < are just the canonical order.
 If ρ : C → G is an ample category bundle with well-structured (S, Z, Φ) = (S_c(ρ), Z_c(ρ), Φ^ρ_c) then, for any a, b ∈ S_c(ρ),

$$egin{array}{lll} a\leq b & \Leftrightarrow & a|_{\mathrm{supp}(a)}=b|_{\mathrm{supp}(a)}\ a < b & \Leftrightarrow & \mathrm{supp}(a)\subseteq b^{-1}[\mathcal{C}^{ imes}]. \end{array}$$

▶ In fact $a \le b \Rightarrow a|_{O} = b|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$. ⇒ we can define a (relative) complement $b \setminus a \in \mathcal{S}_{c}(\rho)$ by

$$(b \setminus a)(g) = egin{cases} \mathbf{0}(g) & ext{if } g \in ext{supp}(a) \\ b(g) & ext{otherwise.} \end{cases}$$

▶ Also, for every $a \in S_c(\rho)$, we have $b \in S_c(\rho)$ with a < b.

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

 $a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

 $a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$

For inverse semigroups, $a \perp b$ means $ab^{-1} = a^{-1}b = 0$.

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

 $a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$

▶ For inverse semigroups, $a \perp b$ means $ab^{-1} = a^{-1}b = 0$.

▶ If $\rho : C \twoheadrightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi) = (S_c(\rho), Z_c(\rho), \Phi_c^{\rho})$ then, for any $a, b \in S_c(\rho)$,

$$a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b) = \emptyset \ \& \ \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G).$$

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

$$a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$$

For inverse semigroups, $a \perp b$ means $ab^{-1} = a^{-1}b = 0$.

▶ If $\rho : C \twoheadrightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi) = (S_c(\rho), Z_c(\rho), \Phi_c^{\rho})$ then, for any $a, b \in S_c(\rho)$,

$$a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b) = \emptyset \ \& \ \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G).$$

 $\Rightarrow\,$ we can define a supremum (w.r.t. restriction) a $\lor\, b\in \mathcal{S}_{\mathsf{c}}(\rho)$ by

$$(a \lor b)(g) = egin{cases} a(g) & ext{if } g \in ext{supp}(a) \ b(g) & ext{otherwise}. \end{cases}$$

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

$$a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$$

For inverse semigroups, $a \perp b$ means $ab^{-1} = a^{-1}b = 0$.

▶ If $\rho : C \twoheadrightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi) = (S_c(\rho), Z_c(\rho), \Phi_c^{\rho})$ then, for any $a, b \in S_c(\rho)$,

$$a\perp b \quad \Leftrightarrow \quad \mathrm{supp}(a)\cap \mathrm{supp}(b)=\emptyset \ \& \ \mathrm{supp}(a)\cup \mathrm{supp}(b)\in \mathcal{B}(G).$$

 $\Rightarrow\,$ we can define a supremum (w.r.t. restriction) a $\vee\, b\in\mathcal{S}_{\mathsf{c}}(\rho)$ by

$$(a \lor b)(g) = egin{cases} a(g) & ext{if } g \in ext{supp}(a) \ b(g) & ext{otherwise}. \end{cases}$$

For any other $s \in S_{c}(\rho)$, we also immediately see that

 $(a \lor b)s = as \lor bs$ & $s(a \lor b) = sa \lor sb$. (Distributivity)

▶ On well-structured (S, Z, Φ) with $0 \in Z$ we define \bot by

$$a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z \ (ya = a = az \text{ and } yb = 0 = bz).$$

For inverse semigroups, $a \perp b$ means $ab^{-1} = a^{-1}b = 0$.

▶ If $\rho : C \twoheadrightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi) = (S_c(\rho), Z_c(\rho), \Phi_c^{\rho})$ then, for any $a, b \in S_c(\rho)$,

$$a\perp b \quad \Leftrightarrow \quad \mathrm{supp}(a)\cap \mathrm{supp}(b)=\emptyset \ \& \ \mathrm{supp}(a)\cup \mathrm{supp}(b)\in \mathcal{B}(G).$$

 $\Rightarrow\,$ we can define a supremum (w.r.t. restriction) a $\vee\, b\in\mathcal{S}_{\mathsf{c}}(\rho)$ by

$$(a \lor b)(g) = egin{cases} a(g) & ext{if } g \in ext{supp}(a) \ b(g) & ext{otherwise}. \end{cases}$$

For any other $s \in S_{c}(\rho)$, we also immediately see that

 $(a \lor b)s = as \lor bs$ & $s(a \lor b) = sa \lor sb$. (Distributivity)

► Also $y, z \in \mathcal{Z}_{c}(\rho)$, i.e. $y[\operatorname{supp}(y)], z[\operatorname{supp}(z)] \subseteq C^{0}$, $\Rightarrow y \lor z \in \mathcal{Z}_{c}(\rho)$.

Definition We call (S, Z, Φ) a well-structured semigroup if

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ , and

Definition

We call (S, Z, Φ) a well-structured semigroup if

- 1. S is a semigroup on which we have a shiftable expectation $\Phi,$ and
- 2. Z is a normal bistable subsemigroup of idempotents in $Z(ran(\Phi))$.

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. ${\it S}$ is a semigroup on which we have a shiftable expectation $\Phi,$ and

2. Z is a normal bistable subsemigroup of idempotents in $Z(ran(\Phi))$. We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. *S* is a semigroup on which we have a shiftable expectation Φ , and 2. *Z* is a normal bistable subsemigroup of idempotents in $Z(ran(\Phi))$.

We call (S, Z, Φ) a Steinberg semigroup of idempotents in $Z(ran(\Phi))$ every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

What we have shown is that every ample category bundle ρ : C → G yields a Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c).

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ , and 2. Z is a normal bistable subsemigroup of idempotents in $Z(ran(\Phi))$. We call (S, Z, Φ) a Steinberg semigroup if, moreover,

every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

- What we have shown is that every ample category bundle ρ : C → G yields a Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c).
- ▶ Note G here is Hausdorff but C may not be. In fact

 $\begin{array}{ll} C \text{ is Hausdorff} & \Leftrightarrow & \mathsf{each} \ a \in \mathcal{S}_{\mathsf{c}}(\rho) \ \mathsf{has \ open \ support} \\ & \Rightarrow & \mathsf{each} \ a \in \mathcal{S}_{\mathsf{c}}(\rho) \ \mathsf{has \ support \ projections}, \end{array}$

i.e. minimal $y, z \in \mathcal{Z}_{c}(\rho)$ such that ya = a = az.

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. *S* is a semigroup on which we have a shiftable expectation Φ , and 2. *Z* is a normal bistable subsemigroup of idempotents in $Z(ran(\Phi))$. We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of *S* is dominated by another, *Z* has a zero and

both S and Z have distributive orthosuprema and complements.

- What we have shown is that every ample category bundle ρ : C → G yields a Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c).
- ▶ Note G here is Hausdorff but C may not be. In fact

 $\begin{array}{ll} C \text{ is Hausdorff} & \Leftrightarrow & \mathsf{each} \ a \in \mathcal{S}_{\mathsf{c}}(\rho) \text{ has open support} \\ & \Rightarrow & \mathsf{each} \ a \in \mathcal{S}_{\mathsf{c}}(\rho) \text{ has support projections,} \end{array}$

i.e. minimal $y, z \in \mathcal{Z}_{c}(\rho)$ such that ya = a = az.

⇒ (S, Z) is a restriction semigroup (see Kudryavtseva-Lawson). Boolean Restriction \land -Semigroups \subseteq_{\neq} Steinberg Semigroups.

Can we recover an ample category bundle ρ : C → G from the resulting Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c)?

- Can we recover an ample category bundle ρ : C → G from the resulting Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c)?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of S_c(ρ) (w.r.t. domination <):</p>

$$g \mapsto \mathcal{U}_g = \{a \in S : a(g) \in C^{\times}\}.$$

- Can we recover an ample category bundle ρ : C → G from the resulting Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c)?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of S_c(ρ) (w.r.t. domination <):</p>

$$g \mapsto \mathcal{U}_g = \{a \in S : a(g) \in C^{\times}\}.$$

▶ Note a(g) = b(g) implies $a|_{O} = b|_{O}$ for some open $O \ni x$ so

$$a(g)=b(g) \quad \Leftrightarrow \quad \exists s \in \mathcal{U}_{g^{-1}} \; (\Phi(as)=\Phi(bs)).$$

- Can we recover an ample category bundle ρ : C → G from the resulting Steinberg semigroup (S_c(ρ), Z_c(ρ), Φ^ρ_c)?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of S_c(ρ) (w.r.t. domination <):</p>

$$g \mapsto \mathcal{U}_g = \{a \in S : a(g) \in C^{\times}\}.$$

▶ Note a(g) = b(g) implies $a|_{O} = b|_{O}$ for some open $O \ni x$ so

$$a(g)=b(g) \quad \Leftrightarrow \quad \exists s \in \mathcal{U}_{g^{-1}} \; (\Phi(as)=\Phi(bs)).$$

Thus the fibre at g can be recovered from the equivalence classes of S_c(ρ) modulo the relation defined on the right.

• Take a Steinberg semigroup (S, Z, Φ) .

- Take a Steinberg semigroup (S, Z, Φ) .
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$U \cdot V = (UV)^{<}$$
 and $U^{-1} = \{s \in S : U \ni u <_s v\}.$

- Take a Steinberg semigroup (S, Z, Φ) .
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$U \cdot V = (UV)^{<}$$
 and $U^{-1} = \{s \in S : U \ni u <_s v\}.$

• Given $U \in \mathcal{U}(S)$, define an equivalence \sim_U on S by

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ) .
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$U \cdot V = (UV)^{<}$$
 and $U^{-1} = \{s \in S : U \ni u <_s v\}.$

• Given $U \in \mathcal{U}(S)$, define an equivalence \sim_U on S by

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

► The pairs [a, U] = (a^{~v}, U[<]) of ultrafilters and their equivalence classes form a category under the product

$$[a, U][b, V] = [ab, UV]$$
 when $0 \notin UV$.

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ) .
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$U \cdot V = (UV)^{<}$$
 and $U^{-1} = \{s \in S : U \ni u <_s v\}.$

• Given $U \in \mathcal{U}(S)$, define an equivalence \sim_U on S by

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

► The pairs [a, U] = (a^{~v}, U[<]) of ultrafilters and their equivalence classes form a category under the product

$$[a, U][b, V] = [ab, UV]$$
 when $0 \notin UV$.

• Define ρ on these pairs $\mathcal{U}[S]$ onto the ultrafilters $\mathcal{U}(S)$ by

$$\rho([a, U]) = U^{<}.$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ) .
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$U \cdot V = (UV)^{<}$$
 and $U^{-1} = \{s \in S : U \ni u <_s v\}.$

• Given $U \in \mathcal{U}(S)$, define an equivalence \sim_U on S by

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

► The pairs [a, U] = (a^{~v}, U[<]) of ultrafilters and their equivalence classes form a category under the product

$$[a, U][b, V] = [ab, UV]$$
 when $0 \notin UV$.

• Define ρ on these pairs $\mathcal{U}[S]$ onto the ultrafilters $\mathcal{U}(S)$ by

$$\rho([a, U]) = U^{<}.$$

This ρ is an ample category bundle with the topology on U[S] generated by ρ⁻¹[U(a)] and U[a] = {[a, U] : U ∈ U(S)}.

Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle ρ = ρ_(S,Z,Φ) : U[S] → U(S).

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle ρ = ρ_(S,Z,Φ) : U[S] → U(S).
- Every $a \in S$ defines $\widehat{a} \in S_{c}(\rho)$ by

$$\widehat{a}(U) = [a, U].$$

Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle ρ = ρ_(S,Z,Φ) : U[S] → U(S).

• Every
$$a \in S$$
 defines $\widehat{a} \in \mathcal{S}_{\mathsf{c}}(
ho)$ by

$$\widehat{a}(U) = [a, U].$$

• This is a semigroup isomorphism from S onto $S_c(\rho)$.

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle ρ = ρ_(S,Z,Φ) : U[S] → U(S).
- Every $a \in S$ defines $\widehat{a} \in S_{c}(\rho)$ by

$$\widehat{a}(U) = [a, U].$$

- This is a semigroup isomorphism from *S* onto $S_c(\rho)$.
- ▶ It also maps Z onto $Z_{c}(\rho)$ and, for all $a \in S_{c}(\rho)$,

$$\widehat{\Phi(a)} = \Phi^{\rho}_{\mathsf{c}}(\widehat{a}).$$

Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle ρ = ρ_(S,Z,Φ) : U[S] → U(S).

• Every
$$a \in S$$
 defines $\widehat{a} \in \mathcal{S}_{\mathsf{c}}(
ho)$ by

$$\widehat{a}(U) = [a, U].$$

- This is a semigroup isomorphism from S onto $S_{c}(\rho)$.
- ▶ It also maps Z onto $Z_{c}(\rho)$ and, for all $a \in S_{c}(\rho)$,

$$\widehat{\Phi(a)} = \Phi^{\rho}_{\mathsf{c}}(\widehat{a}).$$

Theorem (B. 2021)

Steinberg semigroups are dual to ample category bundles via

$$(S, Z, \Phi) \mapsto \rho_{(S, Z, \Phi)}$$
 and $\rho \mapsto (\mathcal{S}_{\mathsf{c}}(\rho), \mathcal{Z}_{\mathsf{c}}(\rho), \Phi^{\rho}_{\mathsf{c}}).$

 If (S, Z, Φ) and (S', Z', Φ') are Steinberg semigroups then a Steinberg morphism is a map π : S → S' s.t. π[Z] ⊆ Z',

 $\pi(ab)=\pi(a)\pi(b), \quad \pi(a \lor b)=\pi(a)\lor \pi(b) \quad ext{and} \quad \Phi'(\pi(a))=\pi(\Phi(a)).$

 If (S, Z, Φ) and (S', Z', Φ') are Steinberg semigroups then a Steinberg morphism is a map π : S → S' s.t. π[Z] ⊆ Z',

 $\pi(ab)=\pi(a)\pi(b), \quad \pi(a \lor b)=\pi(a)\lor \pi(b) \quad ext{and} \quad \Phi'(\pi(a))=\pi(\Phi(a)).$

Then we get a continuous star-bijective functor π̂ from an open subgroupoid of U(S') to U(S) defined by

$$\widehat{\pi}(U') = \pi^{-1}[U']^<$$
 when $\pi^{-1}[U']
eq \emptyset.$

If (S, Z, Φ) and (S', Z', Φ') are Steinberg semigroups then a Steinberg morphism is a map π : S → S' s.t. π[Z] ⊆ Z',

 $\pi(ab)=\pi(a)\pi(b), \quad \pi(aee b)=\pi(a)ee \pi(b) \quad ext{and} \quad \Phi'(\pi(a))=\pi(\Phi(a)).$

Then we get a continuous star-bijective functor π̂ from an open subgroupoid of U(S') to U(S) defined by

$$\widehat{\pi}(U')=\pi^{-1}[U']^<$$
 when $\pi^{-1}[U']
eq \emptyset.$

We also get a bundle morphism from the π̂-pullback of ρ(s,z,Φ) to ρ(s',z',Φ').

If (S, Z, Φ) and (S', Z', Φ') are Steinberg semigroups then a Steinberg morphism is a map π : S → S' s.t. π[Z] ⊆ Z',

 $\pi(ab)=\pi(a)\pi(b), \quad \pi(aee b)=\pi(a)ee \pi(b) \quad ext{and} \quad \Phi'(\pi(a))=\pi(\Phi(a)).$

Then we get a continuous star-bijective functor π̂ from an open subgroupoid of U(S') to U(S) defined by

$$\widehat{\pi}(U')=\pi^{-1}[U']^<$$
 when $\pi^{-1}[U']
eq \emptyset.$

- We also get a bundle morphism from the π̂-pullback of ρ(S,Z,Φ) to ρ(S',Z',Φ').
- In this way, Steinberg morphisms between Steinberg semigroups correspond precisely to Pierce morphisms between the corresponding ample category bundles.

If (S, Z, Φ) and (S', Z', Φ') are Steinberg semigroups then a Steinberg morphism is a map π : S → S' s.t. π[Z] ⊆ Z',

 $\pi(ab)=\pi(a)\pi(b), \quad \pi(aee b)=\pi(a)ee \pi(b) \quad ext{and} \quad \Phi'(\pi(a))=\pi(\Phi(a)).$

Then we get a continuous star-bijective functor π̂ from an open subgroupoid of U(S') to U(S) defined by

$$\widehat{\pi}(U')=\pi^{-1}[U']^<$$
 when $\pi^{-1}[U']
eq \emptyset.$

- We also get a bundle morphism from the π̂-pullback of ρ(S,Z,Φ) to ρ(S',Z',Φ').
- In this way, Steinberg morphisms between Steinberg semigroups correspond precisely to Pierce morphisms between the corresponding ample category bundles.

Theorem (B. 2021)

Under these morphisms, Steinberg semigroups and ample category bundles form equivalent categories.

Definition

An ample ringoid bundle is an ample category bundle $\rho : C \twoheadrightarrow G$ where each fibre $\rho^{-1}{g}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$(a+b)(c+d) = ac + ad + bc + bd.$$

Definition

An ample ringoid bundle is an ample category bundle $\rho : C \twoheadrightarrow G$ where each fibre $\rho^{-1}{g}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$(a+b)(c+d) = ac + ad + bc + bd.$$

We can then extend the product from S_c(ρ) to all compactly supported continuous sections C_c(ρ) by convolution:

$$ab(g) = \sum_{g=hi} a(h)b(i)$$

(sums are finite because $C_{c}(\rho)$ consists of finite sums of $S_{c}(\rho)$)

Definition

An ample ringoid bundle is an ample category bundle $\rho : C \twoheadrightarrow G$ where each fibre $\rho^{-1}{g}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$(a+b)(c+d) = ac + ad + bc + bd.$$

We can then extend the product from S_c(ρ) to all compactly supported continuous sections C_c(ρ) by convolution:

$$ab(g) = \sum_{g=hi} a(h)b(i)$$

(sums are finite because $C_c(\rho)$ consists of finite sums of $S_c(\rho)$) Φ_c^{ρ} also extends to an additive expectation on $C_c(\rho)$.

Definition

An ample ringoid bundle is an ample category bundle $\rho : C \twoheadrightarrow G$ where each fibre $\rho^{-1}{g}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$(a+b)(c+d) = ac + ad + bc + bd.$$

We can then extend the product from S_c(ρ) to all compactly supported continuous sections C_c(ρ) by convolution:

$$ab(g) = \sum_{g=hi} a(h)b(i)$$

(sums are finite because $C_{c}(\rho)$ consists of finite sums of $S_{c}(\rho)$)

- Φ_{c}^{ρ} also extends to an additive expectation on $C_{c}(\rho)$.
- $\Rightarrow (\mathcal{C}_{\mathsf{c}}(\rho), \mathcal{S}_{\mathsf{c}}(\rho), \mathcal{Z}_{\mathsf{c}}(\rho), \Phi_{\mathsf{c}}^{\rho}) \text{ is a Steinberg ring, i.e.}$ a Steinberg semigroup generating a larger ring.

• Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].
- This makes $\rho : \mathcal{U}[A] \twoheadrightarrow \mathcal{U}(S)$ is an ample ringoid bundle.

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].
- This makes $\rho : \mathcal{U}[A] \twoheadrightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$\widehat{a}(U)=[a,U].$$

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].
- This makes $\rho : \mathcal{U}[A] \twoheadrightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$\widehat{a}(U) = [a, U].$$

• Again $\widehat{A} = C_{c}(\rho)$, $\widehat{S} = S_{c}(\rho)$, $\widehat{Z} = Z_{c}(\rho)$ and $\widehat{\Phi} = \Phi_{c}^{\rho}$.

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].
- This makes $\rho : \mathcal{U}[A] \twoheadrightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$\widehat{a}(U) = [a, U].$$

- Again $\widehat{A} = C_{c}(\rho)$, $\widehat{S} = S_{c}(\rho)$, $\widehat{Z} = Z_{c}(\rho)$ and $\widehat{\Phi} = \Phi_{c}^{\rho}$.
- Morphisms are as before but also preserve additive structure.

- Given a Steinberg ring (A, S, Z, Φ) , define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_U now on all of A, i.e.

$$a \sim_U b \qquad \Leftrightarrow \qquad \exists s \in U^{-1} \ (\Phi(as) = \Phi(bs)).$$

- As Φ is additive, so is ~_U. Thus we can add equivalence classes for fixed U ∈ U(S), i.e. [a, U] + [b, U] = [a + b, U].
- This makes $\rho : \mathcal{U}[A] \twoheadrightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$\widehat{a}(U) = [a, U].$$

- Again $\widehat{A} = C_{c}(\rho)$, $\widehat{S} = S_{c}(\rho)$, $\widehat{Z} = Z_{c}(\rho)$ and $\widehat{\Phi} = \Phi_{c}^{\rho}$.
- Morphisms are as before but also preserve additive structure.

Theorem (B. 2021)

Steinberg rings & ample ringoid bundles form equivalent categories.