Lawson-Pierce Duality between Ample Groupoid Bundles and Steinberg Rings \& Semigroups

Tristan Bice

Institute of Mathematics of the Czech Academy of Sciences

Groupoidfest 2021 (November 13th)
University of Colorado, Colorado Springs

Algebraic-Topological Dualities: Rings and Algebras

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C *-Algebras

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C *-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C *-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids.

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?
2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?
2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?
2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras
\leftrightarrow Twisted Effective Ample Groupoids.

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?
2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras
\leftrightarrow Twisted Effective Ample Groupoids. Functoriality?

Algebraic-Topological Dualities: Rings and Algebras

- Various classical dualities take the form:

Commutative Rings/Algebras \leftrightarrow Topological Spaces/Bundles.

1. Gelfand (1941):

Commutative C*-Algebras
\leftrightarrow Locally Compact Hausdorff Spaces.
2. Keimel (1970):

Idempotent-Generated Torsion-Free Commutative Algebras
\leftrightarrow 0-Dimensional Compact Hausdorff Spaces (= Stone Spaces).
3. Pierce (1967) and Dauns-Hofmann (1966):

Biregular Rings
\leftrightarrow Bundles of Simple Rings over Stone Spaces.

- What about noncommutative extensions?

1. Kumjian (1986) and Renault (2008):

Cartan Pairs of C*-Algebras
\leftrightarrow Twisted Effective LCH Étale Groupoids. Functoriality?
2. Armstrong-Castro-Clark-Courtney-Lin-McCormick-Ramagge-Sims-Steinberg (2021):

Quasi-Cartain Pairs of Algebras
\leftrightarrow Twisted Effective Ample Groupoids. Functoriality?
3. ????? Rings \leftrightarrow Bundles of Rings over Ample Groupoids?

Algebraic-Topological Dualities: Lattices and Semigroups

Algebraic-Topological Dualities: Lattices and Semigroups

- Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras \leftrightarrow Stone Spaces
(Bool Alg = Bounded Complemented Distributive Lattice)

Algebraic-Topological Dualities: Lattices and Semigroups

- Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras \leftrightarrow Stone Spaces
(Bool Alg = Bounded Complemented Distributive Lattice)
e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

Algebraic-Topological Dualities: Lattices and Semigroups

- Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras \leftrightarrow Stone Spaces
(Bool Alg = Bounded Complemented Distributive Lattice)
e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

- Bundle extension by Lawson-Kudryavsteva (2015):

Skew Boolean Algebras $\leftrightarrow \quad$ Bundles of Stone Spaces.

Algebraic-Topological Dualities: Lattices and Semigroups

- Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras \leftrightarrow Stone Spaces

(Bool Alg = Bounded Complemented Distributive Lattice)
e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

- Bundle extension by Lawson-Kudryavsteva (2015):

Skew Boolean Algebras \leftrightarrow Bundles of Stone Spaces.

- Noncommutative extensions by Lawson-Kudryavsteva (2017):

Boolean Inverse Semigroups \leftrightarrow Ample Groupoids.
Boolean Restriction Semigroups \leftrightarrow Ample Categories.
????? Semigroups \leftrightarrow Ample Category-Groupoid Bundles?

Algebraic-Topological Dualities: Lattices and Semigroups

- Other lattice-topological dualities trace back to Stone (1936):

Boolean Algebras \leftrightarrow Stone Spaces

(Bool Alg = Bounded Complemented Distributive Lattice)
e.g. Wallman (1938), Shirota (1952), De Vries (1962), Priestley (1970), Grätzer (1978), Hofmann-Lawson (1978), Hansoul-Poussart (2008), Bezhanishvili-Jansana (2011), Gehrke-van Gool (2014), Celani-Gonzalez (2020), etc.

- Bundle extension by Lawson-Kudryavsteva (2015): Skew Boolean Algebras \leftrightarrow Bundles of Stone Spaces.
- Noncommutative extensions by Lawson-Kudryavsteva (2017):

Boolean Inverse Semigroups \leftrightarrow Ample Groupoids.
Boolean Restriction Semigroups \leftrightarrow Ample Categories.
????? Semigroups \leftrightarrow Ample Category-Groupoid Bundles?

- Could we even use these to derive their ring/algebra analogs?

Stone Spaces \rightarrow Boolean Algebras

Stone Spaces \rightarrow Boolean Algebras

- Let X be a Stone space ($=0$-dim compact Hausdorff space).

Stone Spaces \rightarrow Boolean Algebras

- Let X be a Stone space ($=0$-dim compact Hausdorff space).
- Order clopens $\mathcal{C O}(X)$ by inclusion, i.e.

$$
O \leq N \quad \Leftrightarrow \quad O \subseteq N
$$

Stone Spaces \rightarrow Boolean Algebras

- Let X be a Stone space ($=0$-dim compact Hausdorff space).
- Order clopens $\mathcal{C O}(X)$ by inclusion, i.e.

$$
O \leq N \quad \Leftrightarrow \quad O \subseteq N
$$

- Then $\mathcal{C O}(X)$ is a Boolean algebra $\because \forall O, N, M \in \mathcal{C O}(X)$

$$
\begin{array}{rlr}
\emptyset & \subseteq O \subseteq X & \text { (Bounded) } \\
O \wedge N & =O \cap N & \text { (Meets/Infima) } \\
O \vee N & =O \cup N & \text { (Joins/Suprema) } \\
O^{c} & =X \backslash O & \text { (Complements) } \\
M \wedge(N \vee O) & =(M \wedge N) \vee(M \wedge O) & \text { (Distributive) }
\end{array}
$$

Stone Space Recovery

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?
- For each $x \in X$, note

$$
\mathcal{U}_{x}=\{O \in \mathcal{C O}(X): x \in O\}
$$

is a maximal proper down-directed up-set (= ultrafilter):

$$
\begin{array}{rclr}
& \emptyset \notin \mathcal{U}_{x} & & \text { (proper) } \\
O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & \text { (up-set) } \\
O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & \text { (down-directed) } \\
O \in \mathcal{U}_{x} & \text { or } & X \backslash O \in \mathcal{U}_{x} & \text { (maximal) }
\end{array}
$$

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?
- For each $x \in X$, note

$$
\mathcal{U}_{x}=\{O \in \mathcal{C O}(X): x \in O\}
$$

is a maximal proper down-directed up-set (= ultrafilter):

$$
\begin{array}{rclr}
& \emptyset \notin \mathcal{U}_{x} & & \text { (proper) } \\
O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & \text { (up-set) } \\
O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & \text { (down-directed) } \\
O \in \mathcal{U}_{x} & \text { or } & X \backslash O \in \mathcal{U}_{x} & \text { (maximal) }
\end{array}
$$

- Conversely, if $\mathcal{U} \subseteq \mathcal{C O}(X)$ is an ultrafilter then $\bigcap \mathcal{U} \neq \emptyset$, as X is compact, and hence $\bigcap \mathcal{U}=\{x\}$, as \mathcal{U} is maximal.

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?
- For each $x \in X$, note

$$
\mathcal{U}_{x}=\{O \in \mathcal{C O}(X): x \in O\}
$$

is a maximal proper down-directed up-set (= ultrafilter):

$$
\begin{array}{rclr}
& \emptyset \notin \mathcal{U}_{x} & & \text { (proper) } \\
O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & \text { (up-set) } \\
O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & \text { (down-directed) } \\
O \in \mathcal{U}_{x} & \text { or } & X \backslash O \in \mathcal{U}_{x} & \text { (maximal) }
\end{array}
$$

- Conversely, if $\mathcal{U} \subseteq \mathcal{C O}(X)$ is an ultrafilter then $\bigcap \mathcal{U} \neq \emptyset$, as X is compact, and hence $\bigcap \mathcal{U}=\{x\}$, as \mathcal{U} is maximal.
- So $x \mapsto \mathcal{U}_{x}$ is a bijection from X onto ultrafilters in $\mathcal{C O}(X)$.

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?
- For each $x \in X$, note

$$
\mathcal{U}_{x}=\{O \in \mathcal{C O}(X): x \in O\}
$$

is a maximal proper down-directed up-set (= ultrafilter):

$$
\begin{array}{rllr}
& \emptyset \notin \mathcal{U}_{x} & & \text { (proper) } \\
O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & \text { (up-set) } \\
O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & \text { (down-directed) } \\
O \in \mathcal{U}_{x} & \text { or } & X \backslash O \in \mathcal{U}_{x} & \text { (maximal) }
\end{array}
$$

- Conversely, if $\mathcal{U} \subseteq \mathcal{C O}(X)$ is an ultrafilter then $\bigcap \mathcal{U} \neq \emptyset$, as X is compact, and hence $\bigcap \mathcal{U}=\{x\}$, as \mathcal{U} is maximal.
- So $x \mapsto \mathcal{U}_{x}$ is a bijection from X onto ultrafilters in $\mathcal{C O}(X)$.
- Moreover, $O \in \mathcal{C O}(X)$ gets mapped to $\left\{\mathcal{U}_{x}: O \in \mathcal{U}_{x}\right\}$.

Stone Space Recovery

- How can we recover a Stone space X from $\mathcal{C O}(X)$?
- For each $x \in X$, note

$$
\mathcal{U}_{x}=\{O \in \mathcal{C O}(X): x \in O\}
$$

is a maximal proper down-directed up-set (= ultrafilter):

$$
\begin{array}{rclr}
& \emptyset \notin \mathcal{U}_{x} & & \text { (proper) } \\
O \supseteq N \in \mathcal{U}_{x} & \Rightarrow & O \in \mathcal{U}_{x} & \text { (up-set) } \\
O, N \in \mathcal{U}_{x} & \Rightarrow & O \cap N \in \mathcal{U}_{x} & \text { (down-directed) } \\
O \in \mathcal{U}_{x} & \text { or } & X \backslash O \in \mathcal{U}_{x} & \text { (maximal) }
\end{array}
$$

- Conversely, if $\mathcal{U} \subseteq \mathcal{C O}(X)$ is an ultrafilter then $\bigcap \mathcal{U} \neq \emptyset$, as X is compact, and hence $\bigcap \mathcal{U}=\{x\}$, as \mathcal{U} is maximal.
- So $x \mapsto \mathcal{U}_{x}$ is a bijection from X onto ultrafilters in $\mathcal{C O}(X)$.
- Moreover, $O \in \mathcal{C O}(X)$ gets mapped to $\left\{\mathcal{U}_{x}: O \in \mathcal{U}_{x}\right\}$.
- Topologising ultrafilters like so, $x \mapsto \mathcal{U}_{x}$ is a homeomorphism.

Boolean Algebras \rightarrow Stone Spaces

Boolean Algebras \rightarrow Stone Spaces

- Given a Boolean algebra B, consider the topology on

$$
\mathcal{U}(B)=\{U \subseteq B: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(B): a \in U\}$, for $a \in B$.

Boolean Algebras \rightarrow Stone Spaces

- Given a Boolean algebra B, consider the topology on

$$
\mathcal{U}(B)=\{U \subseteq B: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(B): a \in U\}$, for $a \in B$.

- Identifying each $U \in \mathcal{U}(B)$ with $\mathbf{1}_{U}: B \rightarrow\{0,1\}$ where

$$
\mathbf{1}_{U}(a)= \begin{cases}1 & \text { if } a \in U \\ 0 & \text { if } a \notin U\end{cases}
$$

$\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^{B}$.

Boolean Algebras \rightarrow Stone Spaces

- Given a Boolean algebra B, consider the topology on

$$
\mathcal{U}(B)=\{U \subseteq B: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(B): a \in U\}$, for $a \in B$.

- Identifying each $U \in \mathcal{U}(B)$ with $\mathbf{1}_{U}: B \rightarrow\{0,1\}$ where

$$
\mathbf{1}_{U}(a)= \begin{cases}1 & \text { if } a \in U \\ 0 & \text { if } a \notin U\end{cases}
$$

$\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^{B}$.

- Thus $\mathcal{U}(B)$ is also a Stone space.

Boolean Algebras \rightarrow Stone Spaces

- Given a Boolean algebra B, consider the topology on

$$
\mathcal{U}(B)=\{U \subseteq B: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(B): a \in U\}$, for $a \in B$.

- Identifying each $U \in \mathcal{U}(B)$ with $\mathbf{1}_{U}: B \rightarrow\{0,1\}$ where

$$
\mathbf{1}_{U}(a)= \begin{cases}1 & \text { if } a \in U \\ 0 & \text { if } a \notin U\end{cases}
$$

$\mathcal{U}(B)$ is a closed subspace of $\{0,1\}^{B}$.

- Thus $\mathcal{U}(B)$ is also a Stone space.

Theorem (Stone 1936)
Boolean algebras are dual to Stone spaces via

$$
B \mapsto \mathcal{U}(B) \quad \text { and } \quad X \mapsto \mathcal{C O}(X)
$$

Groupoids \rightarrow Inverse Semigroups

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h .
$$

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0} .
$$

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } s \text { are injective on } B\}
$$

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } \mathrm{s} \text { are injective on } B\} .
$$

- Associativity passes from G to $\mathcal{B}(G)$ with the product

$$
B C=\left\{b c: b \in B, c \in C \text { and }(b, c) \in G^{2}\right\} .
$$

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } s \text { are injective on } B\} .
$$

- Associativity passes from G to $\mathcal{B}(G)$ with the product

$$
B C=\left\{b c: b \in B, c \in C \text { and }(b, c) \in G^{2}\right\}
$$

- For any $B, C \subseteq G^{0}$, note $B C=B \cap C=C B$.

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } s \text { are injective on } B\}
$$

- Associativity passes from G to $\mathcal{B}(G)$ with the product

$$
B C=\left\{b c: b \in B, c \in C \text { and }(b, c) \in G^{2}\right\}
$$

- For any $B, C \subseteq G^{0}$, note $B C=B \cap C=C B$.
\Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^{0}$ iff $B B=B$).

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } s \text { are injective on } B\} .
$$

- Associativity passes from G to $\mathcal{B}(G)$ with the product

$$
B C=\left\{b c: b \in B, c \in C \text { and }(b, c) \in G^{2}\right\}
$$

- For any $B, C \subseteq G^{0}$, note $B C=B \cap C=C B$.
\Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^{0}$ iff $B B=B$).
- Also $B \in \mathcal{B}(G)$ implies $B^{-1}=\left\{b^{-1}: b \in B\right\} \in \mathcal{B}(G)$,

$$
B B^{-1} B=B \quad \text { and } \quad B^{-1} B B^{-1}=B^{-1}
$$

Groupoids \rightarrow Inverse Semigroups

- A groupoid G is a 'group with many units', i.e.

1. We have a (partial) associative product on $G^{2} \subseteq G \times G$.
2. Each $g \in G^{0}=\{g \in G: g g=g\}$ is a unit, i.e.

$$
(f, g),(g, h) \in G^{2} \quad \Rightarrow \quad f g=f \text { and } g h=h
$$

3. Each $g \in G$ has a (unique) inverse g^{-1}, i.e. such that

$$
s(g)=g^{-1} g \in G^{0} \quad \text { and } \quad r(g)=g g^{-1} \in G^{0}
$$

- We denote the bisections or slices of G by

$$
\mathcal{B}(G)=\{B \subseteq G: r \text { and } s \text { are injective on } B\} .
$$

- Associativity passes from G to $\mathcal{B}(G)$ with the product

$$
B C=\left\{b c: b \in B, c \in C \text { and }(b, c) \in G^{2}\right\}
$$

- For any $B, C \subseteq G^{0}$, note $B C=B \cap C=C B$.
\Rightarrow Idempotents in $\mathcal{B}(G)$ commute (as $B \subseteq G^{0}$ iff $B B=B$).
- Also $B \in \mathcal{B}(G)$ implies $B^{-1}=\left\{b^{-1}: b \in B\right\} \in \mathcal{B}(G)$,

$$
B B^{-1} B=B \quad \text { and } \quad B^{-1} B B^{-1}=B^{-1}
$$

$\Rightarrow \mathcal{B}(G)$ is an inverse semigroup.

Lattice Structure

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.
- $\mathcal{B}(G)$ is NOT a \vee-semilattice as $O \cup N$ may not be a slice.

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.
- $\mathcal{B}(G)$ is NOT a V-semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

$$
O N^{-1}=O^{-1} N=\emptyset \quad \Leftrightarrow \quad O \cap N=\emptyset \text { and } O \cup N \in \mathcal{B}(G)
$$

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.
- $\mathcal{B}(G)$ is NOT a \vee-semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

$$
O N^{-1}=O^{-1} N=\emptyset \quad \Leftrightarrow \quad O \cap N=\emptyset \text { and } O \cup N \in \mathcal{B}(G)
$$

- Arbitrary idempotents $O, N \subseteq G^{0}$ also have joins $O \cup N$ as well as (relative) complements $O \backslash N$, i.e. satisfying

$$
O \wedge(O \backslash N)=\emptyset \quad \text { and } \quad O \vee(O \backslash N)=O \vee N
$$

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.
- $\mathcal{B}(G)$ is NOT a \vee-semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

$$
O N^{-1}=O^{-1} N=\emptyset \quad \Leftrightarrow \quad O \cap N=\emptyset \text { and } O \cup N \in \mathcal{B}(G)
$$

- Arbitrary idempotents $O, N \subseteq G^{0}$ also have joins $O \cup N$ as well as (relative) complements $O \backslash N$, i.e. satisfying

$$
O \wedge(O \backslash N)=\emptyset \quad \text { and } \quad O \vee(O \backslash N)=O \vee N
$$

- The idempotents $\mathcal{P}\left(G^{0}\right)$ are also distributive.

Lattice Structure

- Take a groupoid G. For any $O, N \in \mathcal{B}(G)$,

$$
O \subseteq N \quad \Leftrightarrow \quad O=O N^{-1} N
$$

\Rightarrow The canonical order on the inverse semigroup $\mathcal{B}(G)$ is just \subseteq.

- $\mathcal{B}(G)$ is a \wedge-semilattice: $O \wedge N=O \cap N$, for $O, N \in \mathcal{B}(G)$.
- $\mathcal{B}(G)$ is NOT a \vee-semilattice as $O \cup N$ may not be a slice.
- But orthogonal elements of $\mathcal{B}(G)$ have joins. In fact,

$$
O N^{-1}=O^{-1} N=\emptyset \quad \Leftrightarrow \quad O \cap N=\emptyset \text { and } O \cup N \in \mathcal{B}(G)
$$

- Arbitrary idempotents $O, N \subseteq G^{0}$ also have joins $O \cup N$ as well as (relative) complements $O \backslash N$, i.e. satisfying

$$
O \wedge(O \backslash N)=\emptyset \quad \text { and } \quad O \vee(O \backslash N)=O \vee N
$$

- The idempotents $\mathcal{P}\left(G^{0}\right)$ are also distributive.
$\Rightarrow \mathcal{B}(G)$ forms a Boolean inverse semigroup.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B} .
\end{array}
$$

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} . \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B} .
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B}
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow \mathrm{s}, \mathrm{r},{ }^{-1}$ and $\cdot\left(\mathrm{on} G^{2}\right)$ are all continuous open maps.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B}
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow s, r,^{-1}$ and $\cdot\left(\right.$ on $\left.G^{2}\right)$ are all continuous open maps.

- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses \& products.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B}
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow s, r,^{-1}$ and $\cdot\left(\right.$ on $\left.G^{2}\right)$ are all continuous open maps.

- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses \& products.
$\Leftrightarrow \mathcal{B}_{\mathrm{c}}^{\circ}(G)=\{O \subseteq G: O$ is a compact open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B}
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow s, r,^{-1}$ and $\cdot\left(\right.$ on $\left.G^{2}\right)$ are all continuous open maps.

- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses \& products.
$\Leftrightarrow \mathcal{B}_{\mathrm{c}}^{\circ}(G)=\{O \subseteq G: O$ is a compact open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow G$ is 0 -dimensional locally compact and étale.

Ample Groupoids \rightarrow Boolean Inverse Semigroups

- A topology on a groupoid G is étale if it has a basis of open bisections \mathcal{B} closed under taking inverses and products, i.e.

$$
\begin{array}{rll}
O \in \mathcal{B} & \Rightarrow & O^{-1} \in \mathcal{B} \\
O, N \in \mathcal{B} & \Rightarrow & O N \in \mathcal{B}
\end{array}
$$

$\Leftrightarrow \mathcal{B}^{\circ}(G)=\{O \subseteq G: O$ is an open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow s, r,^{-1}$ and • (on G^{2}) are all continuous open maps.

- A Hausdorff topology on a groupoid is ample if it has a basis of compact open bisections closed under inverses \& products.
$\Leftrightarrow \mathcal{B}_{\mathrm{c}}^{\circ}(G)=\{O \subseteq G: O$ is a compact open bisection $\}$ is both a basis for the topology and an inverse subsemigroup of $\mathcal{B}(G)$.
$\Leftrightarrow G$ is 0 -dimensional locally compact and étale.
- If $O, N \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ then $O \backslash N, O \cap N \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$. If $O \perp N$ then $O \cup N \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ too so $\mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is a Boolean inverse semigroup.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U$ and $v \in V\}$ (when $\left.0 \notin U V\right)$.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U$ and $v \in V\}$ (when $0 \notin U V$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product
$U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U$ and $v \in V\}$ (when $0 \notin U V$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1}=\mathcal{U}\left(a^{-1}\right)$ and $\mathcal{U}(a) \cdot \mathcal{U}(b)=\mathcal{U}(a b)$.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product

$$
\left.U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U \text { and } v \in V\} \text { (when } 0 \notin U V\right) .
$$

- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1}=\mathcal{U}\left(a^{-1}\right)$ and $\mathcal{U}(a) \cdot \mathcal{U}(b)=\mathcal{U}(a b)$.
$\Rightarrow \mathcal{U}(S)$ is an ample groupoid.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U$ and $v \in V\}$ (when $0 \notin U V$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1}=\mathcal{U}\left(a^{-1}\right)$ and $\mathcal{U}(a) \cdot \mathcal{U}(b)=\mathcal{U}(a b)$.
$\Rightarrow \mathcal{U}(S)$ is an ample groupoid.
- If $S=\mathcal{B}_{\mathrm{c}}^{\circ}(G)$, for ample G, we have an isomorphism to $\mathcal{U}(S)$:

$$
g \mapsto \mathcal{U}_{g}=\{O \in S: g \in O\}
$$

i.e. a homeomorphism with $\mathcal{U}_{g^{-1}}=\mathcal{U}_{g}^{-1}$ and $\mathcal{U}_{g h}=\mathcal{U}_{g} \cdot \mathcal{U}_{h}$.

Boolean Inverse Semigroups \rightarrow Ample Groupoids

- Any Boolean inverse semigroup S again yields a Stone space

$$
\mathcal{U}(S)=\{U \subseteq S: U \text { is an ultrafilter }\}
$$

with basis $\mathcal{U}(a)=\{U \in \mathcal{U}(S): a \in U\}$, for $a \in S$.

- $\mathcal{U}(S)$ is also a groupoid with inverse $U \mapsto U^{-1}$ and product $U \cdot V=(U V)^{\leq}=\{a \geq u v: u \in U$ and $v \in V\}$ (when $0 \notin U V$).
- Each basic open set $\mathcal{U}(a)$ is then a compact open bisection.
- Also $\mathcal{U}(a)^{-1}=\mathcal{U}\left(a^{-1}\right)$ and $\mathcal{U}(a) \cdot \mathcal{U}(b)=\mathcal{U}(a b)$.
$\Rightarrow \mathcal{U}(S)$ is an ample groupoid.
- If $S=\mathcal{B}_{\mathrm{c}}^{\circ}(G)$, for ample G, we have an isomorphism to $\mathcal{U}(S)$:

$$
g \mapsto \mathcal{U}_{g}=\{O \in S: g \in O\}
$$

i.e. a homeomorphism with $\mathcal{U}_{g^{-1}}=\mathcal{U}_{g}^{-1}$ and $\mathcal{U}_{g h}=\mathcal{U}_{g} \cdot \mathcal{U}_{h}$.

Theorem (Lawson 2010)
Boolean inverse semigroups are dual to ample groupoids via

$$
S \mapsto \mathcal{U}(S) \quad \text { and } \quad G \mapsto \mathcal{B}_{\mathrm{c}}^{\circ}(G)
$$

Interlude: Meets vs Expectations

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.
- On any inverse semigroup S with meets, we can also define

$$
\Phi(a)=a \wedge a a^{-1}=a \wedge a^{-1} a=\max \{e \in S: e e=e \leq a\} .
$$

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.
- On any inverse semigroup S with meets, we can also define

$$
\Phi(a)=a \wedge a a^{-1}=a \wedge a^{-1} a=\max \{e \in S: e e=e \leq a\} .
$$

- Leech's Converse (1995): If $\Phi(a)=\max \{e \in S: e e=e \leq a\}$ exists for all $a \in S$ then S has meets, specifically

$$
a \wedge b=\Phi\left(a b^{-1}\right) b=a \Phi\left(a^{-1} b\right)
$$

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.
- On any inverse semigroup S with meets, we can also define

$$
\Phi(a)=a \wedge a a^{-1}=a \wedge a^{-1} a=\max \{e \in S: e e=e \leq a\} .
$$

- Leech's Converse (1995): If $\Phi(a)=\max \{e \in S: e e=e \leq a\}$ exists for all $a \in S$ then S has meets, specifically

$$
a \wedge b=\Phi\left(a b^{-1}\right) b=a \Phi\left(a^{-1} b\right)
$$

- Leech also noted Φ is an expectation: for any $e \in \operatorname{ran}(\Phi)$,

$$
\Phi(a e)=\Phi(a) e, \quad \Phi(e a)=e \Phi(a) \quad \text { and } \quad \Phi(e)=e
$$

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.
- On any inverse semigroup S with meets, we can also define

$$
\Phi(a)=a \wedge a a^{-1}=a \wedge a^{-1} a=\max \{e \in S: e e=e \leq a\} .
$$

- Leech's Converse (1995): If $\Phi(a)=\max \{e \in S: e e=e \leq a\}$ exists for all $a \in S$ then S has meets, specifically

$$
a \wedge b=\Phi\left(a b^{-1}\right) b=a \Phi\left(a^{-1} b\right)
$$

- Leech also noted Φ is an expectation: for any $e \in \operatorname{ran}(\Phi)$,

$$
\Phi(a e)=\Phi(a) e, \quad \Phi(e a)=e \Phi(a) \quad \text { and } \quad \Phi(e)=e
$$

- Φ is also shiftable, i.e. $\Phi(a b) a=a \Phi(b a)$, and bistable:

$$
a b \in \operatorname{ran}(\Phi) \quad \Rightarrow \quad a \Phi(b), \Phi(a) b \in \operatorname{ran}(\Phi)
$$

Interlude: Meets vs Expectations

- If G is an ample groupoid then the largest idempotent contained in any $O \in \mathcal{B}_{\mathrm{c}}^{\circ}(G)$ is given by $\Phi(O)=O \cap G^{0}$.
- On any inverse semigroup S with meets, we can also define

$$
\Phi(a)=a \wedge a a^{-1}=a \wedge a^{-1} a=\max \{e \in S: e e=e \leq a\} .
$$

- Leech's Converse (1995): If $\Phi(a)=\max \{e \in S: e e=e \leq a\}$ exists for all $a \in S$ then S has meets, specifically

$$
a \wedge b=\Phi\left(a b^{-1}\right) b=a \Phi\left(a^{-1} b\right)
$$

- Leech also noted Φ is an expectation: for any $e \in \operatorname{ran}(\Phi)$,

$$
\Phi(a e)=\Phi(a) e, \quad \Phi(e a)=e \Phi(a) \quad \text { and } \quad \Phi(e)=e
$$

- Φ is also shiftable, i.e. $\Phi(a b) a=a \Phi(b a)$, and bistable:

$$
a b \in \operatorname{ran}(\Phi) \quad \Rightarrow \quad a \Phi(b), \Phi(a) b \in \operatorname{ran}(\Phi)
$$

- Bistable shiftable expectations will soon play a greater role...

Ample Category Bundles

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and $\cdot\left(\right.$ on C^{2}) are all cts open locally injective maps (= local homeomorphisms).

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and $\cdot\left(\right.$ on C^{2}) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \rightarrow D$ between categories is an isocofibration if $\rho(a b)=\rho(a) \rho(b)$ when $(a, b) \in C^{2} \underline{\text { OR }}(\rho(a), \rho(b)) \in D^{2}$.

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
c s(c)=c=c r(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and \cdot (on C^{2}) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \rightarrow D$ between categories is an isocofibration if $\rho(a b)=\rho(a) \rho(b)$ when $(a, b) \in C^{2}$ OR $(\rho(a), \rho(b)) \in D^{2}$.
Definition
An étale category bundle is an open continuous isocofibration $\rho: C \rightarrow G$ from an étale category C onto an étale groupoid G.

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and \cdot (on C^{2}) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \rightarrow D$ between categories is an isocofibration if $\rho(a b)=\rho(a) \rho(b)$ when $(a, b) \in C^{2}$ OR $(\rho(a), \rho(b)) \in D^{2}$.
Definition
An étale category bundle is an open continuous isocofibration $\rho: C \rightarrow G$ from an étale category C onto an étale groupoid G.
- Continuous a: $G \rightarrow C$ with $\rho \circ a=\operatorname{id}_{G}$ is a section.

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and $\cdot\left(\right.$ on C^{2}) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \rightarrow D$ between categories is an isocofibration if $\rho(a b)=\rho(a) \rho(b)$ when $(a, b) \in C^{2}$ OR $(\rho(a), \rho(b)) \in D^{2}$.
Definition
An étale category bundle is an open continuous isocofibration $\rho: C \rightarrow G$ from an étale category C onto an étale groupoid G.
- Continuous a: $G \rightarrow C$ with $\rho \circ a=\operatorname{id}_{G}$ is a section.
- Continuous $\mathbf{0}: G \rightarrow C$ with $\rho \circ \mathbf{0}=\mathrm{id}_{G}$ is a zero section if

$$
c \mathbf{0}(g)=\mathbf{0}(\rho(c) g) \quad \text { and } \quad \mathbf{0}(g) d=\mathbf{0}(g \rho(d))
$$

Ample Category Bundles

- A category C is a 'groupoid without inverses', i.e.

1. We have a (partial) associative product on $C^{2} \subseteq C \times C$.
2. Each $c \in C$ has source and range units $s(c), r(c) \in C^{0}$, i.e.

$$
\operatorname{cs}(c)=c=\operatorname{cr}(c) \quad \text { and } \quad C^{2}=\left\{(c, d) \in C^{2}: s(c)=r(d)\right\} .
$$

- A topology on C is étale if s, r and $\cdot\left(o n C^{2}\right.$) are all cts open locally injective maps (= local homeomorphisms).
- A map $\rho: C \rightarrow D$ between categories is an isocofibration if $\rho(a b)=\rho(a) \rho(b)$ when $(a, b) \in C^{2}$ OR $(\rho(a), \rho(b)) \in D^{2}$.
Definition
An étale category bundle is an open continuous isocofibration $\rho: C \rightarrow G$ from an étale category C onto an étale groupoid G.
- Continuous a: $G \rightarrow C$ with $\rho \circ a=\operatorname{id}_{G}$ is a section.
- Continuous $\mathbf{0}: G \rightarrow C$ with $\rho \circ \mathbf{0}=\operatorname{id}_{G}$ is a zero section if

$$
c \mathbf{0}(g)=\mathbf{0}(\rho(c) g) \quad \text { and } \quad \mathbf{O}(g) d=\mathbf{0}(g \rho(d))
$$

- If G is an ample groupoid, ρ has a zero section and each fibre has invertibles $\left(\rho\left[C^{\times}\right]=G\right), \rho$ is an ample category bundle.

Ample Category Bundles \rightarrow Semigroups of Sections

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise. }\end{cases}
$$

- $\operatorname{supp}(a b)$ is compact when $\operatorname{supp}(a)$ and $\operatorname{supp}(b)$ are.

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- $\operatorname{supp}(a b)$ is compact when $\operatorname{supp}(a)$ and $\operatorname{supp}(b)$ are.
\Rightarrow compact-slice-supported sections $\mathcal{S}_{\mathrm{c}}(\rho)$ form a semigroup.

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- $\operatorname{supp}(a b)$ is compact when $\operatorname{supp}(a)$ and $\operatorname{supp}(b)$ are.
\Rightarrow compact-slice-supported sections $\mathcal{S}_{\mathrm{c}}(\rho)$ form a semigroup.
- Can we recover the bundle ρ from the semigroup $\mathcal{S}_{\mathrm{c}}(\rho)$?

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- $\operatorname{supp}(a b)$ is compact when $\operatorname{supp}(a)$ and $\operatorname{supp}(b)$ are.
\Rightarrow compact-slice-supported sections $\mathcal{S}_{\mathrm{c}}(\rho)$ form a semigroup.
- Can we recover the bundle ρ from the semigroup $\mathcal{S}_{\mathrm{c}}(\rho)$?
- No - different bundles can yields isomorphic semigroups.

Ample Category Bundles \rightarrow Semigroups of Sections

- Let $\rho: C \rightarrow G$ be an ample category bundle.
- The support of a section $a: G \rightarrow C$ is given by

$$
\operatorname{supp}(a)=\{g \in G: a(g) \neq \mathbf{0}(g)\}
$$

- If $\operatorname{supp}(a)$ or $\operatorname{supp}(b)$ is a slice, we can define $a b: G \rightarrow C$ by

$$
a b(g)= \begin{cases}a(h) b(i) & \text { if } h \in \operatorname{supp}(a), i \in \operatorname{supp}(b) \text { and } g=h i \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- $\operatorname{supp}(a b)$ is compact when $\operatorname{supp}(a)$ and $\operatorname{supp}(b)$ are.
\Rightarrow compact-slice-supported sections $\mathcal{S}_{\mathrm{c}}(\rho)$ form a semigroup.
- Can we recover the bundle ρ from the semigroup $\mathcal{S}_{\mathrm{c}}(\rho)$?
- No - different bundles can yields isomorphic semigroups.
\therefore We need is some additional algebraic structure on $\mathcal{S}_{\mathrm{c}}(\rho) \ldots$

Expectations and Projections

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.
- A shiftable expectation $\Phi=\Phi_{\mathrm{c}}^{\rho}$ on $\mathcal{S}_{\mathrm{c}}(\rho)$ is given by

$$
\Phi(a)(g)= \begin{cases}a(g) & \text { if } g \in G^{0} \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.
- A shiftable expectation $\Phi=\Phi_{\mathrm{c}}^{\rho}$ on $\mathcal{S}_{\mathrm{c}}(\rho)$ is given by

$$
\Phi(a)(g)= \begin{cases}a(g) & \text { if } g \in G^{0} \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- We denote the subsemigroup of projections in $\mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
\mathcal{Z}_{\mathrm{c}}(\rho)=\left\{z \in \mathcal{S}_{\mathrm{c}}(\rho): z[\operatorname{supp}(z)] \subseteq C^{0}\right\}
$$

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.
- A shiftable expectation $\Phi=\Phi_{\mathrm{c}}^{\rho}$ on $\mathcal{S}_{\mathrm{C}}(\rho)$ is given by

$$
\Phi(a)(g)= \begin{cases}a(g) & \text { if } g \in G^{0} \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- We denote the subsemigroup of projections in $\mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
\mathcal{Z}_{\mathrm{c}}(\rho)=\left\{z \in \mathcal{S}_{\mathrm{c}}(\rho): z[\operatorname{supp}(z)] \subseteq C^{0}\right\}
$$

- Note $\operatorname{supp}(a) \subseteq G^{0}$ and $z[\operatorname{supp}(z)] \subseteq C^{0} \Rightarrow a z=z a$, i.e.

$$
\mathcal{Z}_{\mathrm{c}}(\rho) \subseteq \mathrm{Z}(\operatorname{ran}(\Phi))
$$

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.
- A shiftable expectation $\Phi=\Phi_{\mathrm{c}}^{\rho}$ on $\mathcal{S}_{\mathrm{c}}(\rho)$ is given by

$$
\Phi(a)(g)= \begin{cases}a(g) & \text { if } g \in G^{0} \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- We denote the subsemigroup of projections in $\mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
\mathcal{Z}_{\mathrm{c}}(\rho)=\left\{z \in \mathcal{S}_{\mathrm{c}}(\rho): z[\operatorname{supp}(z)] \subseteq C^{0}\right\}
$$

- Note $\operatorname{supp}(a) \subseteq G^{0}$ and $z[\operatorname{supp}(z)] \subseteq C^{0} \Rightarrow a z=z a$, i.e.

$$
\mathcal{Z}_{\mathrm{c}}(\rho) \subseteq \mathrm{Z}(\operatorname{ran}(\Phi))
$$

- Also $\mathcal{Z}_{\mathrm{C}}(\rho)$ is bistable and normal in $\mathcal{S}_{\mathrm{C}}(\rho)$ (N is normal in S if $a N=N a$, for all $a \in S$).

Expectations and Projections

- Take an ample category bundle $\rho: C \rightarrow G$.
- A shiftable expectation $\Phi=\Phi_{\mathrm{c}}^{\rho}$ on $\mathcal{S}_{\mathrm{c}}(\rho)$ is given by

$$
\Phi(a)(g)= \begin{cases}a(g) & \text { if } g \in G^{0} \\ \mathbf{0}(g) & \text { otherwise }\end{cases}
$$

- We denote the subsemigroup of projections in $\mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
\mathcal{Z}_{\mathrm{c}}(\rho)=\left\{z \in \mathcal{S}_{\mathrm{c}}(\rho): z[\operatorname{supp}(z)] \subseteq C^{0}\right\}
$$

- Note $\operatorname{supp}(a) \subseteq G^{0}$ and $z[\operatorname{supp}(z)] \subseteq C^{0} \Rightarrow a z=z a$, i.e.

$$
\mathcal{Z}_{\mathrm{c}}(\rho) \subseteq \mathrm{Z}(\operatorname{ran}(\Phi))
$$

- Also $\mathcal{Z}_{\mathrm{c}}(\rho)$ is bistable and normal in $\mathcal{S}_{\mathrm{c}}(\rho)$ (N is normal in S if $a N=N a$, for all $a \in S$).
$\Rightarrow\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi\right)$ forms a well-structured semigroup.

Order Structure

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

- For inverse semigroups, \leq and $<$ are just the canonical order.

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

- For inverse semigroups, \leq and $<$ are just the canonical order.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\begin{array}{lll}
a \leq b & \Leftrightarrow & \left.a\right|_{\operatorname{supp}(a)}=\left.b\right|_{\operatorname{supp}(a)} \\
a<b & \Leftrightarrow & \operatorname{supp}(a) \subseteq b^{-1}\left[C^{\times}\right] .
\end{array}
$$

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

- For inverse semigroups, \leq and $<$ are just the canonical order.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\begin{array}{lll}
a \leq b & \Leftrightarrow & \left.a\right|_{\operatorname{supp}(a)}=\left.b\right|_{\operatorname{supp}(a)} \\
a<b & \Leftrightarrow & \operatorname{supp}(a) \subseteq b^{-1}\left[C^{\times}\right] .
\end{array}
$$

- In fact $a \leq\left. b \Rightarrow a\right|_{O}=\left.b\right|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$.

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

- For inverse semigroups, \leq and $<$ are just the canonical order.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\begin{array}{lll}
a \leq b & \Leftrightarrow & \left.a\right|_{\operatorname{supp}(a)}=\left.b\right|_{\operatorname{supp}(a)} \\
a<b & \Leftrightarrow & \operatorname{supp}(a) \subseteq b^{-1}\left[C^{\times}\right] .
\end{array}
$$

- In fact $a \leq\left. b \Rightarrow a\right|_{O}=\left.b\right|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$.
\Rightarrow we can define a (relative) complement $b \backslash a \in \mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
(b \backslash a)(g)= \begin{cases}\mathbf{0}(g) & \text { if } g \in \operatorname{supp}(a) \\ b(g) & \text { otherwise }\end{cases}
$$

Order Structure

- On well-structured (S, Z, Φ) we define orders \leq and $<$ by

$$
\begin{array}{rllr}
a \leq b & \Leftrightarrow & a \in b Z \cap Z b . & \text { (Restriction) } \\
a<b & \Leftrightarrow & \exists s \in S\left(a<_{s} b\right), \text { where } & \text { (Domination) } \\
a<_{s} b & \Leftrightarrow & a s, s a \in \operatorname{ran}(\Phi), s b, b s \in Z \text { and } b s a=a=a s b .
\end{array}
$$

- For inverse semigroups, \leq and $<$ are just the canonical order.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\begin{array}{lll}
a \leq b & \Leftrightarrow & \left.a\right|_{\operatorname{supp}(a)}=\left.b\right|_{\operatorname{supp}(a)} \\
a<b & \Leftrightarrow & \operatorname{supp}(a) \subseteq b^{-1}\left[C^{\times}\right] .
\end{array}
$$

- In fact $a \leq\left. b \Rightarrow a\right|_{O}=\left.b\right|_{O}$ for some clopen $O \supseteq \operatorname{supp}(a)$.
\Rightarrow we can define a (relative) complement $b \backslash a \in \mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
(b \backslash a)(g)= \begin{cases}\mathbf{0}(g) & \text { if } g \in \operatorname{supp}(a) \\ b(g) & \text { otherwise }\end{cases}
$$

- Also, for every $a \in \mathcal{S}_{\mathrm{c}}(\rho)$, we have $b \in \mathcal{S}_{\mathrm{c}}(\rho)$ with $a<b$.

Orthosuprema

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z) .
$$

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z)
$$

- For inverse semigroups, $a \perp b$ means $a b^{-1}=a^{-1} b=0$.

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z)
$$

- For inverse semigroups, $a \perp b$ means $a b^{-1}=a^{-1} b=0$.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b)=\emptyset \& \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G)
$$

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z)
$$

- For inverse semigroups, $a \perp b$ means $a b^{-1}=a^{-1} b=0$.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$, $a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b)=\emptyset \& \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G)$.
\Rightarrow we can define a supremum (w.r.t. restriction) $a \vee b \in \mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
(a \vee b)(g)= \begin{cases}a(g) & \text { if } g \in \operatorname{supp}(a) \\ b(g) & \text { otherwise }\end{cases}
$$

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z) .
$$

- For inverse semigroups, $a \perp b$ means $a b^{-1}=a^{-1} b=0$.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$, $a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b)=\emptyset \& \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G)$.
\Rightarrow we can define a supremum (w.r.t. restriction) $a \vee b \in \mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
(a \vee b)(g)= \begin{cases}a(g) & \text { if } g \in \operatorname{supp}(a) \\ b(g) & \text { otherwise }\end{cases}
$$

- For any other $s \in \mathcal{S}_{\mathrm{c}}(\rho)$, we also immediately see that

$$
(a \vee b) s=a s \vee b s \quad \& \quad s(a \vee b)=s a \vee s b \text {. (Distributivity) }
$$

Orthosuprema

- On well-structured (S, Z, Φ) with $0 \in Z$ we define \perp by

$$
a \perp b \quad \Leftrightarrow \quad \exists y, z \in Z(y a=a=a z \text { and } y b=0=b z) .
$$

- For inverse semigroups, $a \perp b$ means $a b^{-1}=a^{-1} b=0$.
- If $\rho: C \rightarrow G$ is an ample category bundle with well-structured $(S, Z, \Phi)=\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ then, for any $a, b \in \mathcal{S}_{\mathrm{c}}(\rho)$,
$a \perp b \quad \Leftrightarrow \quad \operatorname{supp}(a) \cap \operatorname{supp}(b)=\emptyset \& \operatorname{supp}(a) \cup \operatorname{supp}(b) \in \mathcal{B}(G)$.
\Rightarrow we can define a supremum (w.r.t. restriction) $a \vee b \in \mathcal{S}_{\mathrm{c}}(\rho)$ by

$$
(a \vee b)(g)= \begin{cases}a(g) & \text { if } g \in \operatorname{supp}(a) \\ b(g) & \text { otherwise }\end{cases}
$$

- For any other $s \in \mathcal{S}_{\mathrm{c}}(\rho)$, we also immediately see that

$$
(a \vee b) s=a s \vee b s \quad \& \quad s(a \vee b)=s a \vee s b \text {. (Distributivity) }
$$

- Also $y, z \in \mathcal{Z}_{\mathrm{c}}(\rho)$, i.e. $y[\operatorname{supp}(y)], z[\operatorname{supp}(z)] \subseteq C^{0}$, $\Rightarrow y \vee z \in \mathcal{Z}_{\mathrm{c}}(\rho)$.

Steinberg Semigroups

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and

Steinberg Semigroups

Definition
We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in $Z(\operatorname{ran}(\Phi))$.

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in $Z(\operatorname{ran}(\Phi))$.

We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in $Z(\operatorname{ran}(\Phi))$.

We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

- What we have shown is that every ample category bundle $\rho: C \rightarrow G$ yields a Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$.

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in $Z(\operatorname{ran}(\Phi))$.

We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

- What we have shown is that every ample category bundle $\rho: C \rightarrow G$ yields a Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$.
- Note G here is Hausdorff but C may not be. In fact
C is Hausdorff \Leftrightarrow each $a \in \mathcal{S}_{c}(\rho)$ has open support $\Rightarrow \quad$ each $a \in \mathcal{S}_{\mathrm{c}}(\rho)$ has support projections,
i.e. minimal $y, z \in \mathcal{Z}_{\mathrm{c}}(\rho)$ such that $y a=a=a z$.

Steinberg Semigroups

Definition

We call (S, Z, Φ) a well-structured semigroup if

1. S is a semigroup on which we have a shiftable expectation Φ, and
2. Z is a normal bistable subsemigroup of idempotents in $Z(\operatorname{ran}(\Phi))$.

We call (S, Z, Φ) a Steinberg semigroup if, moreover, every element of S is dominated by another, Z has a zero and both S and Z have distributive orthosuprema and complements.

- What we have shown is that every ample category bundle $\rho: C \rightarrow G$ yields a Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$.
- Note G here is Hausdorff but C may not be. In fact
C is Hausdorff \Leftrightarrow each $a \in \mathcal{S}_{c}(\rho)$ has open support $\Rightarrow \quad$ each $a \in \mathcal{S}_{\mathrm{c}}(\rho)$ has support projections,
i.e. minimal $y, z \in \mathcal{Z}_{\mathrm{c}}(\rho)$ such that $y a=a=a z$.
$\Rightarrow(S, Z)$ is a restriction semigroup (see Kudryavtseva-Lawson). Boolean Restriction \wedge-Semigroups \varsubsetneqq Steinberg Semigroups.

Ample Category Bundle Recovery

Ample Category Bundle Recovery

- Can we recover an ample category bundle $\rho: C \rightarrow G$ from the resulting Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$?

Ample Category Bundle Recovery

- Can we recover an ample category bundle $\rho: C \rightarrow G$ from the resulting Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of $\mathcal{S}_{\mathrm{c}}(\rho)$ (w.r.t. domination $<$):

$$
g \mapsto \mathcal{U}_{g}=\left\{a \in S: a(g) \in C^{\times}\right\}
$$

Ample Category Bundle Recovery

- Can we recover an ample category bundle $\rho: C \rightarrow G$ from the resulting Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of $\mathcal{S}_{\mathrm{c}}(\rho)$ (w.r.t. domination $<$):

$$
g \mapsto \mathcal{U}_{g}=\left\{a \in S: a(g) \in C^{\times}\right\}
$$

- Note $a(g)=b(g)$ implies $\left.a\right|_{O}=\left.b\right|_{O}$ for some open $O \ni x$ so

$$
a(g)=b(g) \quad \Leftrightarrow \quad \exists s \in \mathcal{U}_{g^{-1}}(\Phi(a s)=\Phi(b s))
$$

Ample Category Bundle Recovery

- Can we recover an ample category bundle $\rho: C \rightarrow G$ from the resulting Steinberg semigroup $\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$?
- Yes. As before, we first have an isomorphism from G onto the ultrafilter groupoid of $\mathcal{S}_{\mathrm{c}}(\rho)$ (w.r.t. domination $<$):

$$
g \mapsto \mathcal{U}_{g}=\left\{a \in S: a(g) \in C^{\times}\right\}
$$

- Note $a(g)=b(g)$ implies $\left.a\right|_{O}=\left.b\right|_{O}$ for some open $O \ni x$ so

$$
a(g)=b(g) \quad \Leftrightarrow \quad \exists s \in \mathcal{U}_{g^{-1}}(\Phi(a s)=\Phi(b s))
$$

- Thus the fibre at g can be recovered from the equivalence classes of $\mathcal{S}_{\mathrm{c}}(\rho)$ modulo the relation defined on the right.

Steinberg Semigroups \rightarrow Ample Category Bundles

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$
U \cdot V=(U V)^{<} \quad \text { and } \quad U^{-1}=\left\{s \in S: U \ni u<_{s} v\right\} .
$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$
U \cdot V=(U V)^{<} \quad \text { and } \quad U^{-1}=\left\{s \in S: U \ni u<_{s} v\right\} .
$$

- Given $U \in \mathcal{U}(S)$, define an equivalence $\sim U$ on S by

$$
a \sim U b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$
U \cdot V=(U V)^{<} \quad \text { and } \quad U^{-1}=\left\{s \in S: U \ni u<_{s} v\right\} .
$$

- Given $U \in \mathcal{U}(S)$, define an equivalence $\sim u$ on S by

$$
a \sim U b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- The pairs $[a, U]=\left(a^{\sim U}, U^{<}\right)$of ultrafilters and their equivalence classes form a category under the product

$$
[a, U][b, V]=[a b, U V] \text { when } 0 \notin U V .
$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$
U \cdot V=(U V)^{<} \quad \text { and } \quad U^{-1}=\left\{s \in S: U \ni u<_{s} v\right\} .
$$

- Given $U \in \mathcal{U}(S)$, define an equivalence $\sim u$ on S by

$$
a \sim U b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- The pairs $[a, U]=\left(a^{\sim U}, U^{<}\right)$of ultrafilters and their equivalence classes form a category under the product

$$
[a, U][b, V]=[a b, U V] \text { when } 0 \notin U V
$$

- Define ρ on these pairs $\mathcal{U}[S]$ onto the ultrafilters $\mathcal{U}(S)$ by

$$
\rho([a, U])=U^{<} .
$$

Steinberg Semigroups \rightarrow Ample Category Bundles

- Take a Steinberg semigroup (S, Z, Φ).
- The ultrafilters $\mathcal{U}(S)$ again form an ample groupoid where

$$
U \cdot V=(U V)^{<} \quad \text { and } \quad U^{-1}=\left\{s \in S: U \ni u<_{s} v\right\} .
$$

- Given $U \in \mathcal{U}(S)$, define an equivalence $\sim U$ on S by

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- The pairs $[a, U]=\left(a^{\sim U}, U^{<}\right)$of ultrafilters and their equivalence classes form a category under the product

$$
[a, U][b, V]=[a b, U V] \text { when } 0 \notin U V
$$

- Define ρ on these pairs $\mathcal{U}[S]$ onto the ultrafilters $\mathcal{U}(S)$ by

$$
\rho([a, U])=U^{<} .
$$

- This ρ is an ample category bundle with the topology on $\mathcal{U}[S]$ generated by $\rho^{-1}[\mathcal{U}(a)]$ and $\mathcal{U}[a]=\{[a, U]: U \in \mathcal{U}(S)\}$.

Representing Steinberg Semigroups as Continuous Sections

Representing Steinberg Semigroups as Continuous Sections

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle $\rho=\rho_{(S, Z, \Phi)}: \mathcal{U}[S] \rightarrow \mathcal{U}(S)$.

Representing Steinberg Semigroups as Continuous Sections

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle $\rho=\rho_{(S, Z, \Phi)}: \mathcal{U}[S] \rightarrow \mathcal{U}(S)$.
- Every $a \in S$ defines $\hat{a} \in \mathcal{S}_{c}(\rho)$ by

$$
\widehat{a}(U)=[a, U] .
$$

Representing Steinberg Semigroups as Continuous Sections

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle $\rho=\rho_{(S, Z, \Phi)}: \mathcal{U}[S] \rightarrow \mathcal{U}(S)$.
- Every $a \in S$ defines $\hat{a} \in \mathcal{S}_{\mathcal{C}}(\rho)$ by

$$
\widehat{a}(U)=[a, U] .
$$

- This is a semigroup isomorphism from S onto $\mathcal{S}_{\mathrm{c}}(\rho)$.

Representing Steinberg Semigroups as Continuous Sections

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle $\rho=\rho_{(S, Z, \Phi)}: \mathcal{U}[S] \rightarrow \mathcal{U}(S)$.
- Every $a \in S$ defines $\hat{a} \in \mathcal{S}_{\mathcal{C}}(\rho)$ by

$$
\widehat{a}(U)=[a, U] .
$$

- This is a semigroup isomorphism from S onto $\mathcal{S}_{\mathrm{c}}(\rho)$.
- It also maps Z onto $\mathcal{Z}_{\mathrm{c}}(\rho)$ and, for all $a \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\widehat{\Phi(a)}=\Phi_{c}^{\rho}(\widehat{a}) .
$$

Representing Steinberg Semigroups as Continuous Sections

- Take a Steinberg semigroup (S, Z, Φ) and consider the resulting ample category bundle $\rho=\rho_{(S, Z, \Phi)}: \mathcal{U}[S] \rightarrow \mathcal{U}(S)$.
- Every $a \in S$ defines $\hat{a} \in \mathcal{S}_{\mathrm{C}}(\rho)$ by

$$
\widehat{a}(U)=[a, U] .
$$

- This is a semigroup isomorphism from S onto $\mathcal{S}_{\mathrm{c}}(\rho)$.
- It also maps Z onto $\mathcal{Z}_{\mathrm{c}}(\rho)$ and, for all $a \in \mathcal{S}_{\mathrm{c}}(\rho)$,

$$
\widehat{\Phi(a)}=\Phi_{c}^{\rho}(\widehat{a}) .
$$

Theorem (B. 2021)
Steinberg semigroups are dual to ample category bundles via

$$
(S, Z, \Phi) \mapsto \rho_{(S, Z, \Phi)} \quad \text { and } \quad \rho \mapsto\left(\mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)
$$

Morphisms

Morphisms

- If (S, Z, Φ) and $\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)$ are Steinberg semigroups then a Steinberg morphism is a map $\pi: S \rightarrow S^{\prime}$ s.t. $\pi[Z] \subseteq Z^{\prime}$,

$$
\pi(a b)=\pi(a) \pi(b), \quad \pi(a \vee b)=\pi(a) \vee \pi(b) \quad \text { and } \quad \Phi^{\prime}(\pi(a))=\pi(\Phi(a))
$$

Morphisms

- If (S, Z, Φ) and $\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)$ are Steinberg semigroups then a Steinberg morphism is a map $\pi: S \rightarrow S^{\prime}$ s.t. $\pi[Z] \subseteq Z^{\prime}$,

$$
\pi(a b)=\pi(a) \pi(b), \quad \pi(a \vee b)=\pi(a) \vee \pi(b) \quad \text { and } \quad \Phi^{\prime}(\pi(a))=\pi(\Phi(a))
$$

- Then we get a continuous star-bijective functor $\widehat{\pi}$ from an open subgroupoid of $\mathcal{U}\left(S^{\prime}\right)$ to $\mathcal{U}(S)$ defined by

$$
\widehat{\pi}\left(U^{\prime}\right)=\pi^{-1}\left[U^{\prime}\right]^{<} \quad \text { when } \quad \pi^{-1}\left[U^{\prime}\right] \neq \emptyset .
$$

Morphisms

- If (S, Z, Φ) and $\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)$ are Steinberg semigroups then a Steinberg morphism is a map $\pi: S \rightarrow S^{\prime}$ s.t. $\pi[Z] \subseteq Z^{\prime}$,

$$
\pi(a b)=\pi(a) \pi(b), \quad \pi(a \vee b)=\pi(a) \vee \pi(b) \quad \text { and } \quad \Phi^{\prime}(\pi(a))=\pi(\Phi(a))
$$

- Then we get a continuous star-bijective functor $\widehat{\pi}$ from an open subgroupoid of $\mathcal{U}\left(S^{\prime}\right)$ to $\mathcal{U}(S)$ defined by

$$
\widehat{\pi}\left(U^{\prime}\right)=\pi^{-1}\left[U^{\prime}\right]^{<} \quad \text { when } \quad \pi^{-1}\left[U^{\prime}\right] \neq \emptyset .
$$

- We also get a bundle morphism from the $\widehat{\pi}$-pullback of $\rho_{(S, Z, \Phi)}$ to $\rho_{\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)}$.

Morphisms

- If (S, Z, Φ) and $\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)$ are Steinberg semigroups then a Steinberg morphism is a map $\pi: S \rightarrow S^{\prime}$ s.t. $\pi[Z] \subseteq Z^{\prime}$,

$$
\pi(a b)=\pi(a) \pi(b), \quad \pi(a \vee b)=\pi(a) \vee \pi(b) \quad \text { and } \quad \Phi^{\prime}(\pi(a))=\pi(\Phi(a))
$$

- Then we get a continuous star-bijective functor $\widehat{\pi}$ from an open subgroupoid of $\mathcal{U}\left(S^{\prime}\right)$ to $\mathcal{U}(S)$ defined by

$$
\widehat{\pi}\left(U^{\prime}\right)=\pi^{-1}\left[U^{\prime}\right]^{<} \quad \text { when } \quad \pi^{-1}\left[U^{\prime}\right] \neq \emptyset .
$$

- We also get a bundle morphism from the $\widehat{\pi}$-pullback of $\rho_{(S, Z, \Phi)}$ to $\rho_{\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)}$.
- In this way, Steinberg morphisms between Steinberg semigroups correspond precisely to Pierce morphisms between the corresponding ample category bundles.

Morphisms

- If (S, Z, Φ) and $\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)$ are Steinberg semigroups then a Steinberg morphism is a map $\pi: S \rightarrow S^{\prime}$ s.t. $\pi[Z] \subseteq Z^{\prime}$,

$$
\pi(a b)=\pi(a) \pi(b), \quad \pi(a \vee b)=\pi(a) \vee \pi(b) \quad \text { and } \quad \Phi^{\prime}(\pi(a))=\pi(\Phi(a))
$$

- Then we get a continuous star-bijective functor $\widehat{\pi}$ from an open subgroupoid of $\mathcal{U}\left(S^{\prime}\right)$ to $\mathcal{U}(S)$ defined by

$$
\widehat{\pi}\left(U^{\prime}\right)=\pi^{-1}\left[U^{\prime}\right]^{<} \quad \text { when } \quad \pi^{-1}\left[U^{\prime}\right] \neq \emptyset .
$$

- We also get a bundle morphism from the $\widehat{\pi}$-pullback of $\rho_{(S, Z, \Phi)}$ to $\rho_{\left(S^{\prime}, Z^{\prime}, \Phi^{\prime}\right)}$.
- In this way, Steinberg morphisms between Steinberg semigroups correspond precisely to Pierce morphisms between the corresponding ample category bundles.

Theorem (B. 2021)

Under these morphisms, Steinberg semigroups and ample category bundles form equivalent categories.

Ample Ringoid Bundles \rightarrow Steinberg Rings

Ample Ringoid Bundles \rightarrow Steinberg Rings

Definition

An ample ringoid bundle is an ample category bundle $\rho: C \rightarrow G$ where each fibre $\rho^{-1}\{g\}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$
(a+b)(c+d)=a c+a d+b c+b d .
$$

Ample Ringoid Bundles \rightarrow Steinberg Rings

Definition

An ample ringoid bundle is an ample category bundle $\rho: C \rightarrow G$ where each fibre $\rho^{-1}\{g\}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$
(a+b)(c+d)=a c+a d+b c+b d
$$

- We can then extend the product from $\mathcal{S}_{\mathrm{c}}(\rho)$ to all compactly supported continuous sections $\mathcal{C}_{\mathrm{c}}(\rho)$ by convolution:

$$
a b(g)=\sum_{g=h i} a(h) b(i)
$$

(sums are finite because $\mathcal{C}_{\mathrm{C}}(\rho)$ consists of finite sums of $\mathcal{S}_{\mathrm{C}}(\rho)$)

Ample Ringoid Bundles \rightarrow Steinberg Rings

Definition

An ample ringoid bundle is an ample category bundle $\rho: C \rightarrow G$ where each fibre $\rho^{-1}\{g\}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$
(a+b)(c+d)=a c+a d+b c+b d .
$$

- We can then extend the product from $\mathcal{S}_{\mathrm{c}}(\rho)$ to all compactly supported continuous sections $\mathcal{C}_{\mathrm{c}}(\rho)$ by convolution:

$$
a b(g)=\sum_{g=h i} a(h) b(i)
$$

(sums are finite because $\mathcal{C}_{c}(\rho)$ consists of finite sums of $\mathcal{S}_{\boldsymbol{c}}(\rho)$)

- Φ_{c}^{ρ} also extends to an additive expectation on $\mathcal{C}_{\mathrm{c}}(\rho)$.

Ample Ringoid Bundles \rightarrow Steinberg Rings

Definition

An ample ringoid bundle is an ample category bundle $\rho: C \rightarrow G$ where each fibre $\rho^{-1}\{g\}$ is an abelian group and products distribute over sums whenever they are defined, i.e.

$$
(a+b)(c+d)=a c+a d+b c+b d .
$$

- We can then extend the product from $\mathcal{S}_{\mathrm{c}}(\rho)$ to all compactly supported continuous sections $\mathcal{C}_{\mathrm{c}}(\rho)$ by convolution:

$$
a b(g)=\sum_{g=h i} a(h) b(i)
$$

(sums are finite because $\mathcal{C}_{c}(\rho)$ consists of finite sums of $\mathcal{S}_{\boldsymbol{c}}(\rho)$)

- Φ_{c}^{ρ} also extends to an additive expectation on $\mathcal{C}_{\mathrm{c}}(\rho)$.
$\Rightarrow\left(\mathcal{C}_{\mathrm{c}}(\rho), \mathcal{S}_{\mathrm{c}}(\rho), \mathcal{Z}_{\mathrm{c}}(\rho), \Phi_{\mathrm{c}}^{\rho}\right)$ is a Steinberg ring, i.e.
a Steinberg semigroup generating a larger ring.

Steinberg Rings \rightarrow Ample Ringoid Bundles

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim U$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define $\sim U$ now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim u$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.
- This makes $\rho: \mathcal{U}[A] \rightarrow \mathcal{U}(S)$ is an ample ringoid bundle.

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim u$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.
- This makes $\rho: \mathcal{U}[A] \rightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$
\widehat{a}(U)=[a, U] .
$$

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim u$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.
- This makes $\rho: \mathcal{U}[A] \rightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$
\widehat{a}(U)=[a, U] .
$$

- Again $\widehat{A}=\mathcal{C}_{\mathrm{c}}(\rho), \widehat{S}=\mathcal{S}_{\mathrm{c}}(\rho), \widehat{Z}=\mathcal{Z}_{\mathrm{c}}(\rho)$ and $\widehat{\Phi}=\Phi_{\mathrm{c}}^{\rho}$.

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim u$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.
- This makes $\rho: \mathcal{U}[A] \rightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$
\widehat{a}(U)=[a, U] .
$$

- Again $\widehat{A}=\mathcal{C}_{\mathrm{c}}(\rho), \widehat{S}=\mathcal{S}_{\mathrm{c}}(\rho), \widehat{Z}=\mathcal{Z}_{\mathrm{c}}(\rho)$ and $\widehat{\Phi}=\Phi_{\mathrm{c}}^{\rho}$.
- Morphisms are as before but also preserve additive structure.

Steinberg Rings \rightarrow Ample Ringoid Bundles

- Given a Steinberg ring (A, S, Z, Φ), define $\mathcal{U}(S)$ as before.
- For each $U \in \mathcal{U}(S)$ we can define \sim_{U} now on all of A, i.e.

$$
a \sim u b \quad \Leftrightarrow \quad \exists s \in U^{-1}(\Phi(a s)=\Phi(b s))
$$

- As Φ is additive, so is $\sim u$. Thus we can add equivalence classes for fixed $U \in \mathcal{U}(S)$, i.e. $[a, U]+[b, U]=[a+b, U]$.
- This makes $\rho: \mathcal{U}[A] \rightarrow \mathcal{U}(S)$ is an ample ringoid bundle.
- Moreover, $a \mapsto \hat{a}$ is faithful on all of A where

$$
\widehat{a}(U)=[a, U] .
$$

- Again $\widehat{A}=\mathcal{C}_{\mathrm{c}}(\rho), \widehat{S}=\mathcal{S}_{\mathrm{c}}(\rho), \widehat{Z}=\mathcal{Z}_{\mathrm{c}}(\rho)$ and $\widehat{\Phi}=\Phi_{\mathrm{c}}^{\rho}$.
- Morphisms are as before but also preserve additive structure.

Theorem (B. 2021)

Steinberg rings \& ample ringoid bundles form equivalent categories.

